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Abstract

We study a particular type of sampling designs called Cross-Classified Sampling

(CCS), for an arbitrary number of dimensions. We propose a decomposition of the

variance which allows to derive general asymptotic properties of these designs, and

to construct simple and approximately unbiased variance estimators. Bootstrap

methods are also studied, and shown to lead to approximately unbiased variance

estimation, under mild assumptions. A simulation study supports our findings.
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Résumé

Nous étudions une famille de plans de sondage appelés plans de sondage produit

(CCS), pour un nombre quelconque de dimensions. Nous proposons une décom-

position de la variance qui permet d’obtenir les propriétés asymptotiques de ces

plans de sondages, et de construire des estimateurs de variance simples et approxi-

mativement sans biais. Des méthodes de bootstrap sont également étudiées. Nous

montrons que sous des hypothèses raisonnables, elles conduisent à des estimateurs

de variance approximativement sans biais. Nos résultats sont appuyés par une étude

par simulations.

1 Introduction

Multistage sampling designs are commonly used in household and health surveys. In the case of

the two-stage sampling, the population units are grouped into large blocks (e.g., municipalities

or counties), called Primary Sampling Units (PSUs), which are sampled at the first stage. At

the second stage, a list of population units is obtained inside the selected PSUs, and a sample of

these units is selected. A detailed treatment of multistage sampling may be found in Cochran

(1977), Särndal et al. (1992) and Fuller (2011). In some situations, a population unit k is more

easily represented as a couple (k1, k2). For example, in the ELFE maternity survey (Juillard

et al., 2017), a sample is obtained by selecting a sample of maternities (unit k1), a sample of

days (unit k2), and by crossing the two samples. In this case, a population unit is therefore

given by a day-maternity couple (k1, k2).

In such situations, Ohlsson (1996) introduced the cross-classified sampling (CCS) designs, under

which independent samples S1 and S2 are selected in each dimension. By taking the cartesian
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product of S1 and S2, the final sample S = S1×S2 is naturally obtained. Other examples of use

of cross-classified sampling designs include consumer price index surveys (Dalén and Ohlsson,

1995) and business surveys (Skinner, 2015). To produce reliable estimators with associated confi-

dence intervals, some basic statistical properties are needed for cross-classified sampling designs,

including the consistency and the asymptotic normality of Horvitz-Thompson estimators. It

is also desirable to provide (at least approximately) unbiased variance estimators. Thereupon,

it would be of interest to derive appropriate bootstrap methods for cross-classified sampling.

With the notable exception of Skinner (2015), who proposed a bootstrap algorithm for with-

replacement sampling designs in each dimension, this last topic remains poorly studied in the

literature.

In this work, we extend cross-classified sampling to an arbitrary number of dimensions. Under

some mild conditions, we prove the consistency and the asymptotic normality of the Horvitz-

Thompson (HT)-estimator. Using the Hoeffding-Sobol decomposition (Hoeffding, 1948), we

generalize the variance formula given in Ohlsson (1996) and prove that the variance of the HT-

estimator can be decomposed into a sum of multiple terms with different orders of magnitude.

By identifying the leading terms in this variance decomposition, we obtain simple, consistent

variance estimators. The decomposition is also used to derive bootstrap methods suitable for

cross-classified sampling.

The article is organized as follows. In section 2, we define our notations and state our main

assumptions. In Section 3, we make use of the Hoeffding-Sobol decomposition to obtain a general

variance decomposition and to prove the consistency and the asymptotic normality of the HT-

estimator. We also obtain simple consistent variance estimators. Some illustrations of the use of

these simplified estimators are presented in Section 4. A weighted bootstrap method is proposed
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and studied in Section 5. In Section 6, we consider the particular case of bootstrap variance

estimation when simple random sampling is used in all dimensions. The results of a simulation

study are given in Section 7. The proofs are given in Appendix.

2 Multi-dimensional cross-classified sampling

2.1 Notation

Suppose that we are interested in a finite population U =
∏D

d=1 Ud which can be seen as the

cartesian product of D finite populations of respective sizes Nd, d = 1, . . . , D. The size of the

product population U is therefore N =
∏D

d=1Nd. For each unit k = (k1, . . . , kD) ∈ U , a variable

of interest y takes the value yk. We are interested in estimating the population total

Y =
∑
k∈U

yk. (2.1)

For computations considered in the following sections, it is convenient to introduce some nota-

tions for sub-totals. Let I ⊆ {1, . . . , D} denote a subset of dimensions, and let UI =
∏

d∈I Ud be

the product population associated to these dimensions. For any k′ ∈ UI , we let

Yk′ =
∑
l∈U

∀d∈I, ld=k′d

yl (2.2)

denote the sub-total of y when the set of coordinates in UI remains fixed and equal to k′.

For d ∈ {1, . . . , D}, we let pd(·) denote a sampling design used in the population Ud. Under a

D-dimensional cross-classified sampling design, D independent samples Sd are selected in the

populations Ud, d = 1, . . . , D, and their cartesian product S :=
∏D

d=1 Sd is the overall sample.

Therefore, the resulting sampling design p(·) is such that

∀d ∈ {1, . . . , D}, ∀sd ∈ P(Ud), p

(
D∏

d=1

sd

)
=

D∏
d=1

pd(sd). (2.3)
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In the particular case when D = 2, we obtain the usual two-dimensional cross-classified design

introduced by Ohlsson (1996). It is somewhat similar to a two-stage sampling design where each

unit k1 in U1 would be a PSU, while U2 would be the sub-population of SSUs for any k1. The

main difference is that, due to the independence in the selection of S1 and S2, the same subsam-

ple of SSUs is used inside any PSU: in other words, the cross-classified design does not verify the

independence property (see Särndal et al., 1992). However, the invariance hypothesis is satisfied.

In the population Ud, we let δdk denote the sample membership indicator of the unit k in the

sample Sd. We let πd
k denote the probability that k is selected in Sd, nd =

∑
k∈Ud

πd
k denote

the expected size of the sample Sd, and πd
kl denote the probability that units k and l are jointly

selected in Sd. We will assume in the following that these probabilities are all strictly positive.

Finally we also use the notation

∆d
kl = Cov(δdk, δ

d
l ) = πd

kl − πd
kπ

d
l for any k, l ∈ Ud. (2.4)

2.2 Estimation

We consider weighted total estimators of the form:

Ŷ =
∑
k∈U

yk

D∏
d=1

wd
kd
(Sd), (2.5)

where {wd
k(Sd)}k∈Ud

is a set of estimation weights available for each dimension d ∈ {1, . . . , D}.

We suppose that {wd
k(Sd)}k∈Ud

depends only on the sample Sd, and not on the samples selected

in the other dimensions. When there is no risk of confusion, we simplify the notation as wd
k(Sd) ≡

wd
k. We also suppose that for any d ∈ {1, . . . , D} and k ∈ Ud, wd

k = 0 if k /∈ Sd. This implies

that each unit k ∈ U has an associated weight wk =
∏D

d=1w
d
kd

that can be decomposed as a

product of independent weights, leading to the following compact expression:

Ŷ =
∑
k∈U

ykwk. (2.6)
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In the important particular case when wd
k = {πd

k}−1δdk for k ∈ Ud, we obtain the Horvitz-

Thompson (HT) estimator

Ŷπ =
∑
k∈S

yk∏D
d=1 π

d
kd

=
∑
k∈U

yk

D∏
d=1

δdkd
πd
kd

. (2.7)

We may further introduce for k ∈ U the quantities δk =
∏D

d=1 δ
d
kd

and πk =
∏D

d=1 π
d
kd

, leading

to the compact expression

Ŷπ =
∑
k∈S

yk
πk

=
∑
k∈U

yk
δk
πk

. (2.8)

We will also use the notation πkl =
∏D

d=1 π
d
kdld

for any k, l ∈ U .

2.3 Assumptions

In the paper, we consider the following assumptions:

H1. There exists some constant α such that

1

N

∑
k∈U

y2k ≤ α. (2.9)

H2. For any d = 1, . . . , D, we have nd → ∞ and Nd → ∞, and there exists some constant

fd ∈ [0, 1] such that

nd

Nd
→ fd. (2.10)

H3. For any d = 1, . . . , D, there exists some constant λd > 0 such that

∀k ∈ Ud, πd
k ≥ λd

nd

Nd
. (2.11)

H4. For every d = 1, . . . , D, there exists a constant γd such that

∀k ̸= l ∈ Ud, |∆d
k,l| ≤ γd

nd

N2
d

. (2.12)

The assumption (H1) is related to the variable of interest by assuming that it has a finite mo-

ment of order 2. The assumptions (H2)-(H4) are related to the sampling design. The asymptotic
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framework is defined in (H2). Note in particular that it is assumed that the sample size nd → ∞

in all dimensions, which is needed to obtain the consistency of the Horvitz-Thompson estimator,

see Section 3.2. It is assumed in (H3) that in each dimension d, the first-order inclusion proba-

bilities have a lower bound of order nd/Nd. The assumption (H4) is related to the second-order

inclusion probabilities. The quantity |∆d
k,l| may be thought of as a measure of dependency in the

selection of the units k, l ∈ Ud in the sample Sd. These quantities are equal to 0 if the units are

independently selected in Sd, which is known as Poisson sampling. This assumption is also re-

spected for simple random sampling and rejective sampling (Hájek, 1964), for example. Overall,

assumptions (H1)-(H4) are standard. In the particular case of two-dimensional cross-classified

sampling, they reduce to assumptions (H1)-(H3) in Juillard et al. (2017).

3 Properties of total estimators

3.1 Hoeffding-Sobol variance decomposition of the CCS

From equation (2.5), it is possible to derive the following general variance formula:

Vp(Ŷ ) =
∑
k,l∈U

ykyl

[
D∏

d=1

Ep(w
d
kd
wd
ld
)−

D∏
d=1

Ep(w
d
kd
)Ep(w

d
ld
)

]
. (3.1)

The proof is given in Appendix A.1. However, the naturally derived unbiased variance estima-

tor from equation (3.1) appears to be unpractical in many sampling designs, as illustrated by

Ohlsson (1996). In order to study the statistical properties of estimators and to propose simple

variance estimators, we therefore follow an alternative variance decomposition generalizing the

approach proposed by Ohlsson for the two-dimensional case, and write Ŷ as a sum of uncorre-

lated components. This is summarized in our Proposition 1, whose proof is given in Appendix

A.2. This type of decomposition based on the works of Hoeffding (1948) is now commonly called

Hoeffding-Sobol decomposition or functional ANOVA decomposition.
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Proposition 1. We can write

Ŷ =
∑

I⊆{1,...,D}

Ŷ I , (3.2)

where for any subset I ⊆ {1, . . . , D}:

Ŷ I =
∑

I′∈P(I)

(−1)|I|−|I′|Ep(Ŷ |(Sd)d∈I′) (3.3)

=
∑
k∈U

yk
∏
d∈I

(wd
kd

− Ep(w
d
kd
))
∏
d/∈I

Ep(w
d
kd
). (3.4)

Also, the components {Ŷ I}I⊆{1,...,D} are uncorrelated, and

Vp(Ŷ ) =
∑

I⊆{1,...,D}

Vp(Ŷ
I), (3.5)

where for any I ̸= ∅:

Vp(Ŷ
I) =

∑
k,l∈U

ykyl
∏
d∈I

Covp(w
d
kd
, wd

ld
)
∏
d/∈I

Ep(w
d
kd
)Ep(w

d
ld
). (3.6)

From Proposition 1, we obtain an unbiased variance estimator for Ŷ , as summarized in Corollary

1. The proof is given in Appendix A.3.

Corollary 1. Suppose that the set of weights is adapted to the sampling design, namely that for

any d ∈ {1, . . . , D}:

∀k ∈ Ud, Ep(w
d
k) = 1 (3.7)

Also, suppose that for any d ∈ {1, . . . , D} and for any couple of units k, l ∈ Ud, Ĉov
d
(wd

k, w
d
l )

is an unbiased estimator of Covp(w
d
k, w

d
l ) built from Sd and such that Ĉov

d
(wd

k, w
d
l ) = 0 when k

or l are not in Sd. Then Vp(Ŷ ) may be unbiasedly estimated by

V̂p(Ŷ ) =
∑

I⊆{1,...,D}

V̂p(Ŷ
I), (3.8)

where

V̂p(Ŷ
I) =

∑
k,l∈S

ykyl
∏
d∈I

Ĉov
d
(wd

kd
, wd

ld
)
∏
d/∈I

1

πd
kd,ld

. (3.9)
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3.2 Properties of the Horvitz-Thompson estimator

We now consider the HT-estimator, which is popular in practice. In this case, the general

variance formula (3.1) simplifies to

Vp(Ŷπ) =
∑
k,l∈U

ykyl
πkπl

(πkl − πkπl). (3.10)

By applying the results stated in Proposition 1 and Corollary 1, we obtain an alternative variance

decomposition for Ŷπ and an unbiased variance estimator. This is summarized in Corollary 2.

The proof is given in Appendix B.1.

Corollary 2. The variance of the HT-estimator may be written as

Vp(Ŷπ) =
∑

I⊆{1,...,D}

Vp(Ŷ
I
π ), (3.11)

where for any I ⊆ {1, . . . , D}

Ŷ I
π =

∑
k∈U

yk
∏
d∈I

(
δdkd
πd
kd

− 1

)
. (3.12)

Also, if I ̸= ∅, we have

Vp(Ŷ
I
π ) =

∑
k′,l′∈UI

Yk′

πk′

Yl′

πl′
∆k′l′ , (3.13)

with ∆k′l′ =
∏

d∈I ∆
d
k′dl

′
d

and πk′ =
∏

d∈I π
d
k′d

for any k′, l′ ∈ UI . This variance is unbiasedly

estimated by

V̂p(Ŷ
I
π ) =

∑
k,l∈S

ykyl
πkl

∏
d∈I

∆d
kd,ld

πd
kd
πd
ld

. (3.14)

The Hoeffding-Sobol decomposition therefore enables to write the HT-estimator as the sum of

2D uncorrelated terms given in (3.12), leading to the unbiased variance estimator in (3.14). It

is important to precisely state the orders of magnitude of the terms in the decomposition. This

is established in Proposition 2, see Appendix B.2 for a proof.
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Proposition 2. Suppose that assumptions (H1), (H3) and (H4) hold. Then for every non-empty

subset I of {1, . . . , D}:

Vp(Ŷ
I
π ) = O

(
N2∏
d∈I nd

)
. (3.15)

Proposition 2 has some important consequences. Firstly, it states that the leading terms in

the Hoeffding-Sobol variance decomposition correspond to the subsets I of size 1, and that the

other terms are of negligible order under assumption (H2). It is therefore possible to obtain an

approximately unbiased variance estimator by restricting the variance estimator in (3.14) to the

D terms associated to the singletons, leading to the simplified variance estimator

V̂ SIMP (Ŷπ) =
∑
k,l∈S

ykyl
πkl

(
D∑

d=1

∆d
kd,ld

πd
kd
πd
ld

)
. (3.16)

Secondly, it follows from Proposition 2 that assumption (H2) can not be dropped for the HT-

estimator to be consistent. In other words, if the sample size nd in some dimension d is bounded,

then the variance of N−1Ŷ
{d}
π is not vanishing and the Horvitz-Thompson estimator is not

consistent. The asymptotic properties of the HT-estimator are established in Proposition 3, see

Appendix B.3 for a proof.

Proposition 3. Suppose that assumptions (H1)-(H4) hold. Then

Vp(N
−1Ŷπ) = O

(
n−1
m

)
, (3.17)

where nm = min
d=1,...,D

nd. Additionally, suppose that:

H5. There exists some constant C > 0 such that

Vp(Ŷπ) ≥ CN2n−1
m . (3.18)

H6. For any d = 1, . . . , D:

Ŷ
{d}
π√

Vp

(
Ŷ

{d}
π

) −→L N (0, 1), (3.19)

where −→L stands for the convergence in distribution.
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H7. For any d = 1, . . . , D, there exists some constant γd ≥ 0 such that

Vp(Ŷ
{d}
π )

Vp(Ŷπ)
−→ (γd)

2. (3.20)

Then

Ŷπ − Y√
Vp(Ŷπ)

−→L N (0, 1). (3.21)

It is supposed in Assumption (H5) that the variance of the HT-estimator is non-vanishing, and

has the usual order of magnitude O(N2n−1
m ). It is supposed in Assumption (H6) that for any

dimension d, the HT-estimator is asymptotically normally distributed under the sampling design

used.

3.3 Plug-in variance estimation

Another possible variance estimator can be obtained from the decomposition in equation (3.11).

For any term Vp(Ŷ
I
π ) of the variance decomposition, a plug-in estimator based on the expression

in (3.13)

V̂ PLUG(Ŷ I
π ) =

∑
k′,l′∈SI

Ŷk′

πk′

Ŷl′

πl′

∆k′,l′

πk′,l′
, (3.22)

is obtained by replacing for each k′ ∈ SI the partial sum Yk′ with the unbiased estimator

Ŷk′ =
∑
l∈S

∀d∈I, ld=k′d

yl∏
d/∈I πld

. (3.23)

and by using a Horvitz-Thompson like variance estimator. This leads to the plug-in variance

estimator

V̂ PLUG(Ŷπ) =
∑

I⊆{1,...,D}

V̂ PLUG(Ŷ I
π ). (3.24)

Following the result obtained in Proposition 2, this estimator may be further simplified by

restricting the sum in (3.24) to the D terms associated to the singletons. This leads to the

second simplified variance estimator

V̂ SIMP2(Ŷπ) =
D∑

d=1

∑
kd,ld∈Sd

Ŷkd
πd
kd

Ŷld
πd
ld

∆d
kd,ld

πd
kd,ld

. (3.25)
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By construction, this approximation only consider first order variance terms but intuitively

it is simpler than V̂ SIMP in the sense that it removes higher order interactions inside these

variance terms. More precisely, Proposition 4 shows that the bias of the plug-in estimators can

be expressed in terms of the Vp(Ŷ
I
π ), see Appendix B.4 for a proof.

Proposition 4. For every non-empty subset I of {1, . . . , D}, we have

Ep

[
V̂ PLUG(Ŷ I

π )
]
=
∑
I′⊇I

Vp(Ŷ
I′
π ) (3.26)

It follows from Propositions 2 and 4 that for every non-empty subset I ⊆ {1, . . . , D}, the

estimator V̂ PLUG(Ŷ I
π ) is asymptotically unbiased, and likewise for V̂ PLUG(Ŷπ). In particular, it

results that V̂ SIMP (Ŷπ) and V̂ SIMP2(Ŷπ) are asymptotically similar.

4 Illustrations of the simplified estimations

In this section, we illustrate the proposed simplified variance estimators V̂ SIMP (Ŷπ) and V̂ SIMP2(Ŷπ)

for specific sampling designs, in the two-dimensional situation. The case of simple random sam-

pling in each dimension is considered in Section 4.1, and the case of Poisson sampling in each

dimension is considered in Section 4.2.

4.1 Simple random sampling

We first consider the case when simple random sampling of size nd is used in each dimension

d = 1, 2. The sampling fraction in dimension d is denoted as fd = nd/Nd. The Horvitz-

Thompson estimator can be written in the form

Ŷπ =
N1N2

n1n2

∑
k1∈S1

∑
k2∈S2

yk1k2 (4.1)
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By applying Corollary 2 (see also Ohlsson, 1996), the Hoeffding-Sobol variance decomposition

is

Vp(Ŷπ) = N2
1N

2
2

[
(1− f1)

S2
1

n1
+ (1− f2)

S2
2

n2
+ (1− f1)(1− f2)

S2
12

n1n2

]
(4.2)

where

S2
1 =

1

N1 − 1

∑
k1∈U1

(Y k1• − Y ••)
2 with Y k1• =

1

N2

∑
k2∈U2

yk1k2 ,

S2
2 =

1

N2 − 1

∑
k2∈U2

(Y •k2 − Y ••)
2 with Y •k2 =

1

N1

∑
k1∈U1

yk1k2 , (4.3)

S2
12 =

1

N1 − 1

1

N2 − 1

∑
k1∈U1

∑
k2∈U2

(yk1k2 − Y k1• − Y •k2 + Y ••)
2,

and where Y •• = N−1Y is the population mean.

As mentionned by Skinner (2015), this variance is unbiasedly estimated by replacing each term

with an unbiased counterpart. More specifically, we can use the following unbiased estimators:

Ŝ2
1 =

1

n1 − 1

∑
k1∈S1

(yk1• − y••)
2 − (1− f2)

Ŝ2
12

n2
,

Ŝ2
2 =

1

n2 − 1

∑
k2∈S2

(y•k2 − y••)
2 − (1− f1)

Ŝ2
12

n1
, (4.4)

Ŝ2
12 =

1

n1 − 1

1

n2 − 1

∑
k1∈S1

∑
k2∈S2

(yk1k2 − yk1• − y•k2 + y••)
2,

with

yk1• =
1

n2

∑
k2∈S2

yk1k2 and y•k2 =
1

n1

∑
k1∈S1

yk1k2 (4.5)

the unbiased estimators of the partial means Y k1• and Y •k2 , respectively, and with y•• the

sample mean. Note that both Ŝ2
1 and Ŝ2

2 include correction terms for unbiasedness, which are

negligible if the sample sizes are large enough.

The first proposed variance estimator V̂ SIMP (Ŷπ) given in (3.16) is obtained by removing the
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interaction term in (4.2), leading to

V̂ SIMP (Ŷπ) = N2
1N

2
2

[
(1− f1)

Ŝ2
1

n1
+ (1− f2)

Ŝ2
2

n2

]
. (4.6)

Note that this estimator still uses correction terms inside Ŝ2
1 and Ŝ2

2 and therefore requires the

computation of Ŝ2
12. The second proposed variance estimator V̂ SIMP2(Ŷπ) does not only remove

the interaction term Ŝ2
12, but also these correction terms. This leads to

V̂ SIMP2(Ŷπ) = N2
1N

2
2

[
(1− f1)

Ŝ2,PLUG
1

n1
+ (1− f2)

Ŝ2,PLUG
2

n2

]
(4.7)

where

Ŝ2,PLUG
1 =

1

n1 − 1

∑
k1∈S1

(yk1• − y••)
2,

Ŝ2,PLUG
2 =

1

n2 − 1

∑
k2∈S2

(y•k2 − y••)
2, (4.8)

are the plug-in estimators of S2
1 and S2

2 .

4.2 Poisson sampling

We consider the case when Poisson sampling is used in each dimension d = 1, 2. The HT-

estimator may be written as

Ŷπ =
∑
k1∈S1

∑
k2∈S2

yk1k2

π
(1)
k1

π
(2)
k2

. (4.9)

By applying Corollary 2 (see also Ohlsson, 1996), the Hoeffding-Sobol variance decomposition

is

Vp(Ŷπ) =
∑
k1∈U1

(
1− π

(1)
k1

π
(1)
k1

)
Y 2
k1• +

∑
k2∈U2

(
1− π

(2)
k2

π
(2)
k2

)
Y 2
•k2

+
∑
k1∈U1

∑
k2∈U2

(
1− π

(1)
k1

π
(1)
k1

)(
1− π

(2)
k2

π
(2)
k2

)
y2k1k2 , (4.10)

with Yk1• =
∑

k2∈U2
yk1k2 and Y•k2 =

∑
k1∈U1

yk1k2 the partial sums.
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The variance is unbiasedly estimated by replacing each term in (4.11) with an unbiased coun-

terpart. This leads to the variance estimator

V̂p(Ŷπ) =
∑
k1∈S1

1

π
(1)
k1

(
1− π

(1)
k1

π
(1)
k1

)Ŷ 2
k1• −

∑
k2∈S2

1

π
(2)
k2

(
1− π

(2)
k2

π
(2)
k2

)
y2k1k2


+
∑
k2∈S2

1

π
(2)
k2

(
1− π

(2)
k2

π
(2)
k2

)Ŷ 2
•k2 −

∑
k1∈S1

1

π
(1)
k1

(
1− π

(1)
k1

π
(1)
k1

)
y2k1k2

 (4.11)

+
∑
k1∈S1

∑
k2∈S2

(
1− π

(1)
k1

π
(1)
k1

)(
1− π

(2)
k2

π
(2)
k2

)
y2k1k2

π
(1)
k1

π
(2)
k2

,

with Ŷk1• =
∑

k2∈S2
yk1k2/π

2
k2

and Ŷ•k2 =
∑

k1∈S1
yk1k2/π

1
k1

the unbiased estimators of the par-

tial sums. Note that the two first terms include correction terms for unbiasedness, which can be

shown to be negligible if the sample sizes are large enough.

The first proposed variance estimator V̂ SIMP (Ŷπ) given in (3.16) is obtained by removing the

third interaction term in (4.11). This leads to

V̂ SIMP (Ŷπ) =
∑
k1∈S1

1

π
(1)
k1

(
1− π

(1)
k1

π
(1)
k1

)Ŷ 2
k1• −

∑
k2∈S2

1

π
(2)
k2

(
1− π

(2)
k2

π
(2)
k2

)
y2k1k2


+
∑
k2∈S2

1

π
(2)
k2

(
1− π

(2)
k2

π
(2)
k2

)Ŷ 2
•k2 −

∑
k1∈S1

1

π
(1)
k1

(
1− π

(1)
k1

π
(1)
k1

)
y2k1k2

 (4.12)

The second proposed variance estimator V̂ SIMP2(Ŷπ) also removes the correction terms, leading

to

V̂ SIMP2(Ŷπ) =
∑
k1∈S1

(
1− π

(1)
k1

π
(1)
k1

)
Ŷ 2
k1•

π
(1)
k1

+
∑
k2∈S2

(
1− π

(2)
k2

π
(2)
k2

)
Ŷ 2
•k2

π
(2)
k2

(4.13)

5 Weighted bootstrap method for CCS

We now construct a weighted bootstrap method under the assumption that for each d ∈

{1, . . . , D}, a weighted bootstrap method adapted to the weights (wd
kd
)kd∈Ud

is available. More

precisely we consider for each d ∈ {1, . . . , D} a set of weights (wd∗
kd
)kd∈Sd

satisfying the first and
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second order moment constraints from Beaumont and Patak (2012):

∀kd ∈ Sd, E∗(w
d∗
kd
) = wd

kd
, (5.1)

∀kd, ld ∈ Sd, Cov∗(w
d∗
kd
, wd∗

ld
) = Ĉov

d
(wd

kd
, wd

ld
). (5.2)

A natural bootstrap estimator for CCS is:

Ŷ ∗ =
∑
k∈S

yk

D∏
d=1

wd∗
kd

(5.3)

where the weights are simulated independently in each dimension d ∈ {1, . . . , D}. It is then

possible to consider the Hoeffding-Sobol decomposition of Ŷ ∗, leading to the following expression

for each non-empty subset I ⊆ {1, . . . , D}:

Ŷ I∗ =
∑
k∈S

yk
∏
d∈I

(wd∗
kd

− wd
kd
)
∏
d/∈I

wd
kd

(5.4)

We note V∗(·) for the bootstrap variance, conditionally on the original sample S. By applying

formula (3.6), we obtain:

V∗(Ŷ
I∗) =

∑
k,l∈S

ykyl
∏
d∈I

Cov∗(w
d∗
kd
, wd∗

ld
)
∏
d/∈I

E∗(w
d∗
kd
)E∗(w

d∗
ld
)

=
∑
k,l∈S

ykyl
∏
d∈I

Ĉovp(w
d
kd
, wd

ld
)
∏
d/∈I

wd
kd
wd
ld
. (5.5)

where the last line in (5.5) follows from equations (5.1) and (5.2). It is important to observe

that in the case of HT-estimation, V∗(Ŷ
I∗
π ) is equal to the plug-in estimator V̂ PLUG(Ŷ I

π ) given in

(3.22). Therefore, V ∗(Ŷ ∗
π ) is equal to V̂ PLUG(Ŷπ) as defined in (3.24), and is also asymptotically

unbiased by Proposition 4.

6 Case study: simple random sampling

In this section, we consider the particular important case of CCS in dimension D = 2, when

simple random sampling is used in each dimension. The application of the pseudo-population
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bootstrap is studied in Section 6.1, and the application of the rescaled bootstrap is studied in

Section 6.2.

6.1 Pseudo-Population Bootstrap method

In this section, we propose a pseudo-population bootstrap method for simple random sampling

without replacement in each dimension, based on the method proposed by Gross (1980). To

simplify the presentation, suppose that both N2/n2 and N1/n1 are integers. Once S1 and S2

have been sampled, the idea is to construct a pseudo-population U∗
d by reproducing Nd/nd times

each unit in Sd for each d = 1, 2. Simple random sampling without replacement is then applied

in each pseudo-population to obtain the bootstrap sample S∗
d . The bootstrap estimator is thus

given by

Ŷ ∗
π =

N1N2

n1n2

∑
k1∈S∗

1

∑
k2∈S∗

2

yk1k2 . (6.1)

We can easily check that E∗(Ŷ
∗
π ) = Ŷπ, i.e. this is a conditionally unbiased estimator for Ŷπ,

with E∗(·) the expectation under the bootstrap procedure, conditionall on the original sample

S. Furthermore, the bootstrap variance is

V∗(Ŷ
∗
π ) = N2

1N
2
2

[
(1− f1)

S2∗
1

n1
+ (1− f2)

S2∗
2

n2
+ (1− f1)(1− f2)

S2∗
12

n1n2

]
(6.2)

with

S2∗
1 =

N1(n1 − 1)

n1(N1 − 1)

[
Ŝ2
1 + (1− f2)

Ŝ2
12

n2

]
,

S2∗
2 =

N2(n2 − 1)

n2(N2 − 1)

[
Ŝ2
2 + (1− f1)

Ŝ2
12

n1

]
, (6.3)

S2∗
12 =

N1(n1 − 1)

n1(N1 − 1)

N2(n2 − 1)

n2(N2 − 1)
Ŝ2
12.

Under our asymptotic framework where n1, n2 → ∞, the bootstrap variance is therefore asymp-

totically identical to the unbiased variance estimator of Vp(Ŷπ), see equation (4.4).
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6.2 Rescaled bootstrap method

In this section, we propose a rescaled bootstrap method for simple random sampling without

replacement in each dimension, based on the method proposed by Rao et al. (1992). The Horvitz-

Thompson estimator uses weights of the form wk1k2 = w
(1)
k1

w
(2)
k2

for each unit (k1, k2) ∈ U ,

where w
(1)
k1

= 1/f1 and w
(2)
k2

= 1/f2. The method by Rao and Wu consists in constructing

bootstrap weights wd∗
kd

for d = 1, 2 by multiplying the original weights by an adjustment factor

ad∗kd , leading to the bootstrap weights wd∗
kd

= ad∗kdw
d
kd

. The method consists in sampling so-called

multiplicities (m∗
kd
)kd∈Sd

from a multinomial distribution M
(
n∗
d;

1
nd
, . . . , 1

nd

)
, leading to the

adjustment factors

ad∗kd = 1 +

√
n∗
d(1− fd)

nd − 1

(
ndm

d∗
kd

n∗
d

− 1

)
for any kd ∈ Sd, (6.4)

Note that this method requires to choose the resampling size n∗
d. A customary choice is

n∗
d = nd − 1.

The proposed rescaled bootstrap for CCS consists in building bootstrap weights w∗
k1k2

= w
(1∗)
k1

w
(2∗)
k2

,

by using the rescaled bootstrap in each dimension. Some straightforward algebra leads to

V∗(Ŷ
∗
π ) = N2

1N
2
2

[
(1− f1)

S2∗
1

n1
+ (1− f2)

S2∗
2

n2
+ (1− f1)(1− f2)

S2∗
12

n1n2

]
, (6.5)

with

S2∗
1 = Ŝ2

1 + (1− f2)
Ŝ2
12

n2
,

S2∗
2 = Ŝ2

2 + (1− f1)
Ŝ2
12

n1
, (6.6)

S2∗
12 = Ŝ2

12.

The fact that the method by Rao and Wu satisfies the second order moment condition in

each dimension does not imply that the bootstrap variance estimator for the CCS is unbiased.

Anyway, it guarantees that the leading variance terms are unbiasedly estimated.
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7 Simulations

In this section, we carry out a simulation study under the D = 2 dimensional case, under a set-

up inspired from Juillard et al. (2017). We are interested in evaluating the proposed variance

estimators for the estimation of a total and a ratio. The basic generation model that we use is

yk1k2 = µ+ σ1Uk1 + σ2Vk2 + σ12Wk1k2 , (7.1)

where the Uk1 , Vk2 ,Wk1k2 are independent standard normal variables.

7.1 Variance estimation for a total

The values of the variable of interest in the first population are generated according to the model

7.1. We use N1 = N2 = 1000, µ = 200, and σ1 = σ2 = 5. We let σ12 vary in {5, 10, 50} to

evaluate the influence of the variance due to interactions.

Given the population values, we repeat T = 10000 times the sample selection by means of

CCS with simple random sampling in each dimension, with n1, n2 ∈ {5, 10, 100, 500}. We are

interested in estimating the total Y , and the estimator for the tth sample is denoted as Ŷ (t). We

consider the Unbiased variance estimator, the simplified variance estimator V̂ SIMP (Ŷπ) (Simp)

given in equation (4.6), and the simplified variance estimator V̂ SIMP2(Ŷπ) (Simp2 ) given in

equation (4.7). We also compute the bootstrap variance estimator V̂
(t)
Gross associated to the

pseudo-population bootstrap (Gross), V̂ (t)
RaoWu associated to the rescaled bootstrap (RaoWu), and

V̂
(t)
Skinner associated to a bootstrap procedure for with-replacement sampling in each dimension

proposed by Skinner (2015) (Skinner). In each case, we use B = 1000 bootstrap resamples, and

the bootstrap variance estimator V̂ (t) is computed according to the formula

V̂ (t) =
1

B − 1

B∑
b=1

(
Ŷ (b∗)(t) − 1

B

B∑
b=1

Ŷ (b∗)(t)

)2

. (7.2)
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To evaluate the proposed variance estimators, we consider the Monte-Carlo relative bias

RB(V̂ ) = 100×
1
T

∑T
t=1 V̂

(t) − V

V
, (7.3)

where V is an approximation of the true variance of Ŷ , computed from an independent run of

100, 000 simulations. We also compute the Monte-Carlo relative stability

RS(V̂ ) = 100×

√
1
T

∑T
t=1(V̂

(t) − V )2

V
. (7.4)

Finally, we compute confidence intervals for the bootstrap methods according to the reverse per-

centile method. More precisely, assume that the bootstrap estimates are reordered as Ŷ (1∗)(t) ≤

Ŷ (2∗)(t) ≤ · · · ≤ Ŷ (B∗)(t). Then the reverse percentile confidence interval is obtained by consid-

ering (Ŷ ∗ − Ŷ ) as an approximation of the distribution of Ŷ − Y :

CIREV,(t)
α (Y ) =

[
2Ŷ (t) − Ŷ (U∗)(t), 2Ŷ (t) − Ŷ (L∗)(t)

]
. (7.5)

For CIREV,(t)
α (Y ) to have the level α, the values of L and U are given by L = ⌊1−α

2 B⌋ and

U = ⌊1+α
2 B⌋.

7.2 Variance estimation for a ratio

In the second population, the values for three variables of interest are generated accrding to the

model

zk1k2 = σ1Uk1 + σ2Vk2 + σ12Wk1k2 , (7.6)

xk1k2 = µx + αzk1,k2 + (1− α)(σ′
1U

′
k1 + σ′

2V
′
k2 + σ′

12W
′
k1k2) (7.7)

yk1k2 = µy + βzk1,k2 + (1− β)(σ′′
1U

′′
k1 + σ′′

2V
′′
k2 + σ′′

12W
′′
k1k2). (7.8)

The variables Uk1 , U
′
k1
, U ′′

k1
, Vk2 , V

′
k2
, V ′′

k2
, and Wk1k2 ,W

′
k1k2

,W ′′
k1k2

, are independent standard

normal variables. The parameter α in equation (7.7) is used to control the correlation between

variables x and z. Similarly, the parameter β in equation (7.7) is used to control the correlation
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between variables y and z. Thus, high values of α and β will lead to high correlations of the

variables x and y. We used µx = 100, µy = 300, and σ1 = σ2 = σ12 = σ′
1 = σ′′

1 = 5, σ′
2 = σ′′

2 =

10, σ′
12 = σ′′

12 = 15. Finally we considered α ∈ {0.1, 0.5, 0.8} and β = 0.5.

A similar procedure is then done as the previous subsection in order to compute relative biases

of the different methods, but this time applied to the substitution estimator R̂ = Ŷ /X̂ of the

ratio R = Y/X. For each sample t ∈ {1, . . . , T}, it is possible to produce bootstrap estimations

R̂(b∗)(t) = Ŷ (b∗)(t)/X̂(b∗)(t) from the bootstrap estimations (Ŷ (b∗)(t), X̂(b∗)(t)) of (Ŷ (t), X̂(t)). For

the non-bootstrap methods, a linearization technique will be applied, replacing the variable

(yk1k2 , xk1k2) by its associated linearization νk1k2 = (yk1k2 − R̂xk1k2)/X̂.

7.3 Results

The simulation results for the estimation of a total are gathered in Table 7.3. We can observe

the influence of the value of σ12 in the quality of the proposed estimations. A higher value of

σ12 against σ1 and σ2 tends to increase the importance of S2
12 against S2

1 and S2
2 and thus leads

to a higher relative bias of the proposed simplified variance estimators. On the other hand, we

observe that the relative biases of the proposed variance estimators tend towards 0 as the sample

sizes increase, as expected. Overall, the Rao-Wu bootstrap method and the Skinner bootstrap

method Skinner (2015) have quite similar results for low sampling rates, but the relative bias of

Skinner’s method increases with the sample sizes. This is due to the fact taht this method relies

on the assumption of negligible sampling fractions, an assumption which is not needed for the

proposed variance estimators. The simulation results also confirm that, in accordance with our

theoretical results, the Rao-Wu bootstrap variance estimator tends to be conservative, which is

not the case for the Gross method.

The simulation results for the estimation of a ratio are given in Table 7.3. The conclusions are

very similar. We observe that a high value of α leads to better results, which can be explained
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by the fact that increasing α diminishes the overall interaction noise, by increasing the part

generated with a value of σ12 = 5 against the part generated with a value of σ12 = 15.

A Proofs for Section 3.1

A.1 Proof of equation (3.1)

From equation (2.6), a straightforward computation leads to the result:

Vp(Ŷ ) =
∑
k,l∈U

Covp

(
yk

D∏
d=1

wd
kd
, yl

D∏
d=1

wd
ld

)
(A.1)

=
∑
k,l∈U

ykyl

[
Ep

(
D∏

d=1

wd
kd
wd
ld

)
− Ep

(
D∏

d=1

wd
kd

)
Ep

(
D∏

d=1

wd
ld

)]
(A.2)

=
∑
k,l∈U

ykyl

[
D∏

d=1

Ep(w
d
kd
wd
ld
)−

D∏
d=1

Ep(w
d
kd
)Ep(w

d
ld
)

]
(A.3)

where the last line follows from the independence of the weights in each dimension.

A.2 Proof of Proposition 1

Equations (3.2) as well as (3.5) in the first part of the proposition are general properties of

the Hoeffding-Sobol decomposition applied to Ŷ seen as a function of the independent variables

(Sd)
D
d=1, the general formula corresponding to (3.3). It remains to check if the equation (3.4)

is true in our case by computing for each I ⊆ {1, . . . , D} the associated Ŷ I starting from the

equation (3.3)

Ŷ I =
∑

I′∈P(I)

(−1)|I|−|I′|Ep(Ŷ |(Sd)d∈I′) (A.4)

=
∑

I′∈P(I)

(−1)|I|−|I′|
∑
k∈U

yk

D∏
d=1

[
(wd

kd
− Ep(w

d
kd
))1(d∈I′) + Ep(w

d
kd
)
]

(A.5)

=
∑
k∈U

yk
∑

I′∈P(I)

(−1)|I|−|I′|
∑

I′′⊆{1,...,D}

∏
d∈I′′

(wd
kd

− Ep(w
d
kd
))1(d∈I′)

∏
d/∈I′′

Ep(w
d
kd
). (A.6)
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By observing that for any I ′′ ⊆ {1, . . . , D},
∏

d∈I′′ 1(d∈I′) = 1(I′′⊂I′) and that
∑

I′∈P(I)(−1)|I|−|I′|1(I′′⊆I′) =

1(I′′=I), one can conclude by rearranging the sum that

Ŷ I =
∑
k∈U

yk
∑

I′′⊆{1,...,D}

∏
d∈I′′

(wd
kd

− Ep(w
d
kd
))
∏
d/∈I′′

Ep(w
d
kd
)
∑

I′∈P(I)

(−1)|I|−|I′|1(I′′⊆I′) (A.7)

=
∑
k∈U

yk
∏
d∈I

(wd
kd

− Ep(w
d
kd
))
∏
d/∈I

Ep(w
d
kd
), (A.8)

from which we can deduce the value of Vp(Ŷ
I) for I ̸= ∅:

Vp(Ŷ
I) =

∑
k,l∈U

ykylCovp

(∏
d∈I

(wd
kd

− Ep(w
d
kd
)),
∏
d∈I

(wd
ld
− Ep(w

d
ld
))

)∏
d/∈I

Ep(w
d
kd
)Ep(w

d
ld
) (A.9)

=
∑
k,l∈U

ykylEp

(∏
d∈I

(wd
kd

− Ep(w
d
kd
))(wd

ld
− Ep(w

d
ld
))

)∏
d/∈I

Ep(w
d
kd
)Ep(w

d
ld
) (A.10)

=
∑
k,l∈U

ykyl
∏
d∈I

Covp(w
d
kd
, wd

ld
)
∏
d/∈I

Ep(w
d
kd
)Ep(w

d
ld
). (A.11)

where the last line follows from the independence of the weights in each dimension.

A.3 Proof of Corollary 1

It suffices to show that for every non-empty subset I ⊆ {1, . . . , D}, Vp(Ŷ
I) is unbiasedly esti-

mated by V̂p(Ŷ
I). It is possible to rewrite the sum over U by introducing the sample membership

indicators. We then obtain

Ep(V̂p(Ŷ
I)) =

∑
k,l∈U

ykylEp

[∏
d∈I

Ĉov
d
(wd

kd
, wd

ld
)
∏
d/∈I

δdkdδ
d
ld

πd
kd,ld

]
(A.12)

=
∑
k,l∈U

ykyl
∏
d∈I

Ep

[
Ĉov

d
(wd

kd
, wd

ld
)
]∏
d/∈I

Ep(δ
d
kd
δdld)

πd
kd,ld

(A.13)

=
∑
k,l∈U

ykyl
∏
d∈I

Covp(w
d
kd
, wd

ld
) (A.14)

= Vp(Ŷ
I). (A.15)

where the second line follows from the fact that for a fixed k and l ∈ U , each Ĉov
d
(wd

kd
, wd

ld
)

and δdkdδ
d
ld

are built from the sample Sd only and are thus all independent from each other as

long as they correspond to different dimensions.
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B Proofs for Section 3.2

B.1 Proof of Corollary 2

Equation (3.12) is a direct consequence of equation (3.4), applied for wd
kd

= δdkd/π
d
kd

. Similarly,

equation (3.13) follows from equation (3.6). Finally, equation (3.14) follows by applying equation

(3.9) with

Ĉov
d
(wd

k, w
d
l ) =

∆d
kdld

πd
kd,ld

δdkdδ
d
ld

πd
kd
πd
ld

. (B.1)

B.2 Proof of Proposition 2

Let us introduce the partition UI × UI =
⋃

I′∈P(I) PI′ for a given non-empty I ⊆ {1, . . . , D},

where we defined for each I ′ ∈ P(I), the set PI′ by

PI′ = {k′, l′ ∈ UI , ∀d ∈ I, (k′d ̸= l′d ⇔ d ∈ I ′)} (B.2)

furthermore, note that we can identify every element k ∈ U with a couple (k1,k2) ∈ UI × UIc

where we introduced UIc =
∏

d/∈I Ud. More precisely, the coordinates of k1 are given by the

coordinates of k associated to the dimensions in I and the coordinates of k2 are given by the

coordinates of k associated to the dimensions that are not in I. We will therefore denote by

yk1k2 the quantity yk. This splitting allows us for example to rewrite the subtotal Yk′ in the

form Yk′ =
∑

l′∈UIc
yk′l′ . Now let us fix some subset I ′ ∈ P(I). We can verify using the

Cauchy-Schwarz inequality that

∑
k′∈UI

Y 2
k′ =

∑
k′∈UI

 ∑
l′∈UIc

yk′l′

2

≤

(∏
d/∈I

Nd

) ∑
k′∈UI

∑
l′∈UIc

y2k′l′ ≤ α
N2∏
d∈I Nd

(B.3)

by using the assumption (H1).

Now we can similarly identify an element k′ ∈ UI with a couple (k′
1,k

′
2) ∈ UI′ × UI\I′ . We will

therefore denote by Yk′
1k

′
2

the subtotal Yk′ . Thus, using again the Cauchy-Scharz inequality, it
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is now easy to verify that

∑
(k′,l′)∈PI′

Yk′Yl′ ≤
∑

k′′,l′′∈UI′
m′′∈UI\I′

Yk′′m′′Yl′′m′′ (B.4)

=
∑

m′′∈UI\I′

 ∑
k′′∈UI′

Yk′′m′′

2

(B.5)

≤

(∏
d∈I′

Nd

) ∑
m′′∈UI\I′

∑
k′′∈UI′

Y 2
k′′m′′ (B.6)

≤ α
N2∏

d∈I\I′ Nd
. (B.7)

Furthermore we know by construction of PI′ that for any (k′, l′) ∈ PI′ , k′d ̸= l′d if and only if

d ∈ I ′ and thus using assumption (H3)-(H4) we get that

∀(k′, l′) ∈ PI′ , ∀d ∈ I ′,

∣∣∣∣∣∆
d
k′d,l

′
d

πd
k′d
πd
l′d

∣∣∣∣∣ ≤ γd
λ2
d

1

nd
. (B.8)

On the other hand, when d /∈ I ′, we have that k′d = l′d and thus

∀(k′, l′) ∈ PI′ , ∀d /∈ I ′,

∣∣∣∣∣∆
d
k′d,l

′
d

πd
k′d
πd
l′d

∣∣∣∣∣ = 1− πd
k′d

πd
k′d

≤ 1

λd

Nd

nd
. (B.9)

From there, we can build an upper bound of the sum

∑
(k′,l′)∈PI′

Yk′Yl′
∏
d∈I

∆d
k′dl

′
d

πd
k′d
πd
l′d

=
∑

(k′,l′)∈PI′

Yk′Yl′
∏
d∈I′

∆d
k′dl

′
d

πd
k′d
πd
l′d

∏
d∈I\I′

∆d
k′d,l

′
d

πd
k′d
πd
l′d

(B.10)

= O

 N2∏
d∈I\I′ Nd

∏
d∈I′

1

nd

∏
d∈I\I′

Nd

nd

 (B.11)

= O

(
N2∏
d∈I nd

)
. (B.12)

Now, we can finally conclude that

Vp(Ŷ
I) =

∑
I′∈P(I)

 ∑
(k′,l′)∈PI′

Yk′Yl′
∏
d∈I

∆d
k′dl

′
d

πd
k′d
πd
l′d

 = O

(
N2∏
d∈I nd

)
. (B.13)
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B.3 Proof of Proposition 3

We can write

Ŷπ − Y =

D∑
d=1

Ŷ {d}
π +∆,where ∆ =

∑
I⊂{1,...,D}
Card(I)≥2

Ŷ I
π .

We obtain

Vp(Ŷπ) =
D∑

d=1

Vp(Ŷ
{d}
π ) + Vp(∆). (B.14)

It follows from Proposition 2 that

Vp

(
N−1Ŷ {d}

π

)
= O(n−1

m ) and Vp(N
−1∆) = o(n−1

m ). (B.15)

Therefore, we obtain (3.17). Note that from equations (B.14) and (B.15), the constants in as-

sumption (H7) are such that
∑D

d=1(γd)
2 = 1.

From equation (B.14), we also obtain

Ŷπ − Y√
Vp(Ŷπ)

=
D∑

d=1

γd
Ŷ

{d}
π√

Vp(Ŷ
{d}
π )︸ ︷︷ ︸

∆1

+
D∑

d=1


√√√√Vp(Ŷ

{d}
π )

Vp(Ŷπ)
− γd

 Ŷ
{d}
π√

Vp(Ŷ
{d}
π )︸ ︷︷ ︸

∆2

+
∆√

Vp(Ŷπ)︸ ︷︷ ︸
∆3

. (B.16)

By using assumption (H5) and the right-hand side of (B.14), we have ∆3 −→Pr 0, where −→Pr

stands for the convergence in probability. Also, by using Assumptions (H6) and (H7) and the

Slutsky theorem, we obtain that ∆2 −→Pr 0. Finally, since the variables Ŷ
{d}
π are independent,

we obtain from assumption (H6) by standard arguments that ∆1 −→ N (0, 1), which completes

the proof.
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B.4 Proof of Proposition 4

Let us fix a non-empty subset I ⊆ {1, . . . , D}. We can write using the definitions of V̂ PLUG(Ŷ I
π )

Ep

[
V̂ PLUG(Ŷ I

π )
]
=

∑
k′,l′∈UI

Ep(Ŷk′ Ŷl′δk′δl′)

πk′πl′

∆k′l′

πk′l′
(B.17)

=
∑

k′,l′∈UI

Ep(Ŷk′ Ŷl′)Ep(δk′δl′)

πk′πl′

∆k′l′

πk′l′
(B.18)

=
∑

k′,l′∈UI

Ep(Ŷk′ Ŷl′)

πk′πl′
∆k′l′ (B.19)

Where the line (B.18) follows from the fact that δk′ and δl′ are functions of (Sd)d∈I whereas Ŷk′

and Ŷl′ are functions of (Sd)d/∈I , and are therefore independent. We can then similarly expand

the sum by replacing Ŷk′ and Ŷl′ by their definitions in (3.23):

Ep

[
V̂ PLUG(Ŷ I

π )
]
=

∑
k′,l′∈UI

∑
k,l∈U

∀d∈I,kd=k′d,ld=l′d

yk
πk

yl
πl

∏
d∈I

∆d
kdld

Ep

(∏
d/∈I

δdkdδ
d
ld

)
(B.20)

=
∑
k,l∈U

yk
πk

yl
πl

∏
d∈I

∆d
kdld

∏
d/∈I

πd
kdld

. (B.21)

Now we can furthermore observe that for any k, l ∈ U , we have the following identity

∏
d/∈I

πd
kdld

=
∏
d/∈I

(∆d
kdld

+ πd
kd
πd
ld
) =

∑
I′⊆Ic

∏
d∈I′

∆d
kdld

∏
d∈Ic\I′

πd
kd
πd
ld

(B.22)

which can then be substituted in the previous result to give

Ep

[
V̂ PLUG(Ŷ I

π )
]
=
∑
k,l∈U

yk
πk

yl
πl

∏
d∈I

∆d
kdld

∑
I′⊆Ic

∏
d∈I′

∆d
kdld

∏
d∈Ic\I′

πd
kd
πd
ld

(B.23)

=
∑
I′⊆Ic

∑
k,l∈U

yk∏
d∈I∪I′ π

d
kd

yl∏
d∈I∪I′ π

d
kd

∏
d∈I∪I′

∆d
kdld

(B.24)
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Finally we can note that {I ∪ I ′, I ′ ⊆ Ic} =
{
I ′, I ⊆ I ′ ⊆ {1, . . . , D}

}
. From this observation,

we can make a change of variable and conclude

Ep

[
V̂ PLUG(Ŷ I

π )
]
=
∑
I′⊇I

∑
k,l∈U

yk∏
d∈I′ π

d
kd

yl∏
d∈I′ π

d
kd

∏
d∈I′

∆d
kdld

(B.25)

=
∑
I′⊇I

∑
k′′,l′′∈UI′
k,l∈U

∀d∈I′,kd=k′′d ,ld=l′′d

yk∏
d∈I′ π

d
kd

yl∏
d∈I′ π

d
kd

∏
d∈I′

∆d
kdld

(B.26)

=
∑
I′⊇I

∑
k′′,l′′∈UI′

Yk′′

πk′′

Yl′′

πl′′
∆k′′l′′ (B.27)

=
∑
I′⊇I

Vp(Ŷ
I′
π ). (B.28)
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