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Abstract
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of the tax adjustments that could have been imposed on firms having defrauded (or made
erroneous social declarations), if they had been effectively checked, whereas they were not
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secondly, the empirical methods proposed for estimating such an amount are validated.
To highlight the tractability of our theoretical approach, Monte Carlo simulations are used
before relying on real data. An empirical application is finally performed on real data for
the estimation of the tax shortfall. An approach based both on statistical indicators and
expert knowledge is designed to identify the best configurations of the model, and finally
the tax shortfall is calculated for each of the configurations retained.

Keywords: Social Contribution Fraud; Tax Shortfall; Econometric Methods; Monte Carlo
Simulations

JEL classification: C01, C13, C35, H26.

∗Caisse Centrale de la MSA, Direction des Etudes, des Statistiques et des Fonds
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1 Introduction

Controlling the risks of social and fiscal fraud and combating illegal work are important

problems for social justice and economic efficiency, which aims to reaffirm the balance of

rights and duties and to ensure the sustainability of the social protection system. This paper

proposes to address social contribution fraud by estimating accurately the shortfall in tax

revenue. This tax shortfall is defined as the potential sum of the tax adjustments that could

have been imposed on firms having defrauded (or made erroneous social declarations), if they

had been effectively controlled by an inspection authority, whereas they were not in reality.

Two types of agents are hence involved in the study: the firms (taxpayers) and a control

authority. Each of them takes decisions: each firm decides whether to fraud or not to fraud,

and the control authority decides which firms to monitor.1 It is important to note that

these two decisions are neither sequential nor conditional. The fact of being audited does

not condition in any way the fact of defrauding and vice versa. Hewever, these decisions are

linked: if the inspection authority fulfills its mission effectively, one should observe a greater

probability of auditing for the firms having the highest probability of fraud. Additionally,

two types of biases should be considered: a selection bias (related to the fact that the choice

of controlled companies is not random), and a detection bias (since the illegitimate actions

are not all detected). The objective of the paper is twofold: firstly, we define the shortfall

in tax revenue (hereafter, STax) from a statistical point of view, and secondly, we validate

the empirical methods used to estimate such an amount. To highlight the tractability of our

approach, we use Monte Carlo simulations before relying on real data.

We start by proposing a theoretical definition of the moments of the conditional distri-

bution of STax. This definition is obtained as part of a model or data generating process

(DGP) specifying several behavioral equations related to the decision of control made by a

social security entity, the fraud decision of firms, and the rule of setting the amount of tax

adjustment (which is assumed to be equal to the true amount of fraud). Under normality

hypotheses, this model is akin to a Tobit model with a double censored mechanism. In this

DGP, the STax is a random variable whose realizations are by nature unobservable. However,

conditionally to the DGP, it is possible to characterize the first two moments (expectation and

1The actions of controllers in the field of social security contributions consists of an in-depth examination of
the elements declared by the establishments, in particular with respect to the employment of their employees.
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variance) of its distribution, which will be used to predict the STax for each firm and build

confidence intervals. Due to the dependence between the control and fraud decisions, we show

that the conditional moments of the individual STax do not depend on simple Mills ratios,

but on expectations and variances of multivariate normal laws with double truncation. There

is a rich and complex literature which deals with moments of the normal distribution under

various truncation conditions (unilateral, bilateral) and the number of variables (univariate,

bivariate, multivariate). For this study, we focus on the theoretical propositions in Manjunath

and Wilhelm (2012). The validity of the theoretical formulas is assessed through Monte Carlo

simulations. We compare the simulated mean and empirical variance of the tax adjustment

for the uncontrolled firms corresponding to the first two theoretical moments (expectation

and variance) and observe that their distributions are very close.

The model proposed to estimate the individual STax consists on three equations taking

into account (i) the control decision, (ii) the fraud decision, and (iii) the amount of the tax

adjustment. Its structure is similar to a model with a censorship on the tax adjustment,

similar to a Type II Tobit model introduced by Amemiya (1984). The censorship mechanism

is represented by a bi-Probit model itself censored, or equivalently by a nested Probit with

dependencies (built around the two decisions of control and fraud/detection). The full model

is estimated via Maximum Likelihood (ML). Monte Carlo simulations are used also in order

to assess the validity of the proposed log-likelihood function.

Finally, an empirical application is performed on real data issued from controls carried

out by the MSA (Mutualité Sociale Agricole) on firms in the French agricultural system.2 We

will further refer to as the control entity or authority. Because responsibility and solidarity

are fundamental values of the MSA, controlling the risk of fraud and the fight against illegal

work are at the heart of its concerns. Abuses and fraudulent behaviors, which harm all of

its beneficiaries, engage the responsibility of the MSA with regard to the funds it manages.

To combat illegal activities, the MSA collects data systematically from their beneficiaries and

organizes regular controls on a subsample of their taxpayers. Therefore, estimating STax

makes it possible to quantify the financial impact of the illegal activity for the entire agricul-

2The MSA provides social cover for the entire agricultural population and beneficiaries in France: farmers,
employees (of farms, companies, cooperatives and professional agricultural organisations), employers of labor
work. The MSA was officially recognized as a professional organization by the Ministry of Agriculture in 1940.
Since then, its mission is to manage all the social risks of agricultural policyholders. With 27.4 billion euros in
benefits paid to 5.4 million beneficiaries, it is the second largest social protection scheme in France.
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tural system (fraud, abuse, intentional optimization or error, etc.). To this end, we design

an approach based on both statistical indicators and expert knowledge to identify the best

specifications of the econometric model, and finally calculate the shortfall in tax revenue for

each of the configurations retained.

To the best of our knowledge, this paper is the first to produce a tractable parametric

model for estimating shortfall in tax revenue. This model can be easily applied by any control

authority which is unable to audit all firms under its jurisdiction in order to evaluate the fraud

of the non-controlled firms. Although fraud detection is a research domain with a wide vari-

ety of different applications, including credit card fraud, insurance fraud, telecommunication

fraud, social fraud (see Banulescu-Radu and Yankol-Schalck, 2021; West and Bhattacharya,

2016; Baesens, Van Vlasselaer, and Verbeke, 2015, and the references therein), the academic

literature on social security contribution fraud is very scarce. As a reference, we can cite

Van Vlasselaer, Eliassi-Rad, Akoglu, Snoeck, and Baesens (2017) who study the impact of

network information for social security fraud detection. Their analysis focuses on the identi-

fication of the companies that intentionally go bankrupt in order to avoid contributing their

taxes.

The rest of the article is organized as follows. Section 2 sets the theoretical framework

with a focus on the control and fraud decisions, the formal definition of the tax shortfall and

the main assumptions and propositions used to construct the data generating process and

then the parametric econometric model. Section 3 presents the design and the results of the

Monte Carlo simulations used to evaluate the validity of the theoretical formulas. Section 4

describes and validates the approach used to estimate the complete model. Section 5 presents

and discusses the empirical results whereas Section 6 provides some conclusive remarks.

2 Theoretical framework

2.1 Social security fraud detection background: control and fraud decisions

Two types of agents are considered: (1) a sample of n firms, and (2) an inspection authority.

The two agents can take different decisions:

• each firm decides whether or not to commit fraud,

• the inspection authority decides whether or not to control a given firm.
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It is important to note that these two decisions are neither sequential nor conditional3. The

fact of being audited is not linked to the fact of fraud and vice versa. On the other hand,

these decisions are linked: if the inspection authority fulfills its mission accurately, we should

observe a greater likelihood of inspection for companies with the highest probability of fraud.

This decision process, which will serve as the basis for the first part of our data generating

process (DGP), is shown in Figure 1.

Figure 1: Decision process and theoretical definition of the tax shortfall

An important point at this stage concerns the observability of these two decisions. The

control decision is observable: ex-post, it can be determined which firms have been audited

and which have not. On the other hand, the fraudulent or non-fraudulent status of each firm

is not observable in practice, independently of the control. This is why we introduce the

notion of detection in the estimation (see Section 4): a firm is detected as fraudulent if and

only if (i) it commits fraud, and (ii) it was controlled.

Therefore, the detected/not detected status is what we considered as observable in the

estimation. However, at a first time we place ourselves from the point of view of an omni-

scient modeler who observes the type (fraud/non-fraud) of all firms, and the fraud decision is

therefore assumed to be observable in the DGP. Formally, we introduce two dummy variables

associated with these two decisions.

Let Ci be the dummy control variable indicating whether the firm i is controlled (Ci = 1)

3In our theoretical model, we neglect the temporal dimension and thus the decisions of fraud and control
are supposed to be concomitant. On real data, it will be necessary to question the fact of dating or not the
decisions. Indeed, a firm can start a fraud after having been audited by playing on the low probability of
repeating an audit when the first audit is negative
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or not (Ci = 0). The likelihood of an inspection relies on a set of kc factors Xc,i based on the

following mechanism:

Ci =

{
1 if C∗i = Xc,iβc + εc,i > 0
0 otherwise

∀i = 1, . . . , n (1)

where C∗i is a latent variable, βc a vector with kc parameters and εc,i an i.i.d. error term such

that E (εc,i) = 0 et V (εc,i) = σ2
c .

Let D̃i be the dummy detection variable indicating whether the firm i commits fraud

(D̃i = 1) or not (D̃i = 0)4. The likelihood of fraud relies on a set of kd factors Xd,i and can

be partly similar to the Xc,i factors. The choice to commit fraud is described by the following

mechanism:

D̃i =

{
1 if D∗i = Xd,iβd + εd,i > 0
0 otherwise

∀i = 1, . . . , n (2)

where D∗i is a latent variable, βd a vector with kd parameters and εd,i an i.i.d. error term

such that E (εd,i) = 0 and V (εd,i) = σ2
d.

5

Note that the control and fraud decisions, Ci and D̃i, are linked in two ways. First, some

variables may explain both the fraud and the control decisions (appearing at the same time

in Xd,i,v and Xc,i,v), i.e. common factors might lead both the firm to commit fraud and

the inspection authority to control. Second, the error terms εc,i and εd,i may be correlated,

meaning that we have a link between the omitted factors in the two equations. A positive

correlation coefficient ρcd suggests a higher probability of control for firms with the largest

probabilities of fraud.

2.2 Shortfall in tax revenue

We denote by STaxi, with STaxi ∈ R+, the individual tax shortfall associated with firm

i ∈ 1, . . . , n, where n is total number of firms, and STax =
∑n

i=1 STaxi the global tax

shortfall (STax). The individual STax can be equal to zero when the firm does not commit

fraud. To theoretically define STax, it is now necessary to focus on the amount of the fraud,

or equivalently on the amount of the tax adjustment.

4In practice, the decision to fraud of the firm is unobservable, this is why we note it D̃i in opposition to the
dummy detection variable Di which is observable and introduced in Section 4.

5In Section 4, for estimating this model, we introduce an observed variable Di equal to D̃i for the firms
controlled by the inspection authority (Ci = 1) and to 0 for the firms that have not been controlled.
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Let M∗i be the latent variable indicating the potential amount in euros of the tax adjust-

ment for firm i ∈ 1, . . . , n. We assume the existence of a linear relation between the potential

amount M∗i and a set of km explanatory variables Xm,i, such that:

M∗i =

{
Xm,iβm + εm,i if D̃i = 1
0 otherwise

∀i = 1, . . . , n, (3)

where βm is a vector of km parameters, and the error term εm,i satisfies E (εm,i) = 0 and

V (εm,i) = σ2
m.6 It is important to note that this potential adjustment amount is positive for

all firms that have committed fraud, whether they were controlled or not.7

The potential amount of fraud is only observable for firms which have been (i) audited by

the inspection authority, and (ii) reassessed following the discovery of fraud. We note Mi the

amount of the tax adjustment actually observed such that:

Mi =

{
M∗i if Ci = 1
0 otherwise

∀i = 1, . . . , n, (4)

or equivalently

Mi =

{
Xm,iβm + εm,i if Ci = 1 and D̃i = 1
0 otherwise

∀i = 1, . . . , n. (5)

From the potential tax adjustment M∗i , we can deduce the STaxi for each firm in the

population. STaxi is positive for firms that have defrauded and not been audited, and zero

for all others, as shown in Figure 1. Formally, if we denote STaxi the shortfall associated

with firm i, it verifies:

STaxi = M∗i × 1(Ci=0) × 1
(D̃i=1)

, ∀i = 1, . . . , n, (6)

Let us focus now on the aggregate STax, noted STax =
∑n

i=1 STaxi. It is defined by the

sum of the potential adjustments that could have been imposed on fraudulent firms if they

had been effectively audited, when in fact they were not.

Definition 1 Ex-post, the aggregate STax is defined by:

STax =
∑

i:(Ci=0)∩(D̃i=1)

M∗i =
∑
i:Ci=0

M∗i × 1
(D̃i=1)

=
n∑
i=1

M∗i × 1(Ci=0) × 1
(D̃i=1)

(7)

6In this specification, the notional amount of the adjustment can theoretically be negative. In order to avoid
this, a solution consists in modeling the logarithm of the potential adjustment ln(M∗i ). In the case D̃i = 1,
the logarithm guarantees the positivity of the adjusted amount, independently of the parameters values βm
and the distribution of εm,i, since M∗i = exp (Xm,iβm + εm,i) > 0. On the other hand, when the company had
taken the decision not to defraud, the amount of the potential recovery M∗i remains null.

7Based on a simulation exercise, we can therefore observe a potential adjustment amount M∗i for all firms,
and not just for firms that have been controlled.
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where 1(.) is the dummy variable taking the value 1 when the condition is observed and 0

elsewhere.

We assume that the variable STaxi is a random variable, and the aggregate STax as well.

In this case, our purpose is to determine the first two theoretical moments of its distribution,

i.e. its expectation E (STaxi) and its variance V (STaxi).
8

2.3 Assumptions and Propositions

In the current framework, the usual empirical counterparts for estimating the first two mo-

ments cannot be used since the realizations of the random variable STaxi are latent. One

solution is to assume a parametric distribution on the variable STaxi for inferring a closed-

form expression of the first two theoretical moments with respect to a vector of parameters β

associated with this distribution such that E (STaxi) = f (β) and V (STaxi) = g (β).9 Thus,

when we have a consistent estimator β̂ of the true parameters of a distribution, we can directly

compute the first two theoretical moments by using their explicit formulas f(β̂) and g(β̂).

More precisely, we focus on theoretical moments of the conditional distribution of the

aggregate STax, and propose a three-step approach. First, we design a model for setting the

conditional distribution of STaxi. Second, from this model, we compute closed-form formulas

for the first two theoretical moments, i.e. the conditional expectation E (STaxi|Xi = xi) =

f (xi;β) and the conditional variance V (STaxi|Xi = xi) = g (xi;β), where Xi is a set of

explanatory variables. Third, we estimate the true model parameters β (see Section 4) to

estimate the two conditional moments.

To be valid, this approach assumes that:

1. the model postulated on the conditional distribution of STax must be well-specified;

2. the formulas for the conditional moments must be correct;

3. the method for estimating the model parameters must be valid and lead to convergent

estimations.
8From these two moments, we can get a estimation of STax along with its confidence interval. One

alternative approach could be to fully describe the distribution of STax or at least its fractiles with some
Value-at-Risk (VaR). For example, we can report a VaR at 99% to determine a threshold such that we have a
1% probability of observing a value above this threshold.

9For example, if we assume that the variable STaxi follows a normal distribution law N
(
µ, σ2

)
, the first

two theoretical moments are given by E (STaxi) = f (β) = µ and V (STaxi) = g (β) = σ2 with β =
(
µ, σ2

)′
.
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To go further, two technical assumptions about the distribution of the error terms and

identifiability should be added for satisfying the previous elements.

Assumption A1 (normality): We assume that the error terms εc,i and εd,i follow a bi-

variate normal distribution with ρcd as correlation coefficient.

Assumption A2 (identification): There is at least one explanatory variable for the control

decision Xc,i,u ∈ Xc,i and one explanatory variable for the fraud decision Xd,i,v ∈ Xd,i such

that Cov(Xc,i,u, Xd,i,v) = 0, Cov(Xc,i,u, εd,i) = 0, and Cov(Xd,i,v, εc,i) = 0.10

Assumption A1 implies that the two dummy variables (Ci, D̃i) can be modeled by a usual

bivariate Probit model. Assumption A2 imposes that at least one explanatory variable of the

fraud decision is not linked to the set of explanatory variables defining the control decision,

nor to its error term. Such a condition guarantees the strong identification of both control and

fraud probabilities. In other words, without this assumption, we are unable to disentangle

the two decisions, except if we want a weak identification based on the residuals of Equations

1 and 2.

Two additional technical assumptions should be added as well:

Assumption A3 (normality): We assume that the error term εm,i follows a normal dis-

tribution, and can be linked to the error term εc,i and εd,i. Their corresponding correlation

coefficient is denoted by ρcm and ρdm, respectively.

Assumption A4 (identification): There is at least one explanatory variable for the tax

adjustment Xm,i,u ∈ Xm,i and one explanatory variable for the control decision Xc,i,v ∈ Xc,i

such that Cov(Xm,i,u, Xc,i,v) = 0, Cov(Xm,i,u, εc,i) = 0, and Cov(Xc,i,v, εm,i) = 0.

The normality assumption A3 allows the actual amount Mi (defined in Equation 4) to

be represented by a Tobit model. The factors of the amount of fraud Xm,i and of the fraud

decision Xd,i can be identical or different depending on the censoring mechanism.11 On the

10Another possibility for writing this assumption is to separate within the two equations the common and
specific explanatory variables, which may note this as follows: C∗i = Xc,iβc +Wc,iδc + εc,i and D∗i = Xd,iβd +
εd,i, with Cov (Wc,i,Xd,i) = 0 and Cov (Wc,i, εd,i) = 0.

11This model is a type I Tobit if the explanatory variables for the adjustment equation Xm,i and for the
fraud equation Xd,i are identical and the error terms are identical εd,i = εm,i. Otherwise, it is a type II Tobit
representation in the sense of Amemiya (1984).
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other hand, just as for the fraud decision, for identification reasons, some determinants of

the amount of fraud must be different from those of the control decision. Finally, the error

terms can be linked. For instance, a positive ρcm correlation indicates a greater probability

of control for firms with the highest potential amounts of fraud. In the end, we assume that

the three error terms εc,i, εd,i, and εm,i verify the following properties: εc,i
εd,i
εm,i

 ∼ N (0,Σ) with Σ = DRD (8)

D =

 σc 0 0
0 σd 0
0 0 σm

 R =

 1 ρcd ρcm
ρcd 1 ρdm
ρcm ρdm 1

 (9)

One last assumption must be done regarding the information structure on control and

fraud decisions, since to compute the expectation and variance of STax, it is necessary to

understand what is random and what is not random in the three equations of Definition 7.

Table 1 summarizes the link between the information structure and the nature of the

variables entering into the STax definition.

Table 1: Assumptions on the information structure and STax definition.

Note: The term r.v. means random variables.

Assumptions Aggregate STax definition and variables status

Ci and D̃i realized STax =
∑

i:(Ci=0)∩(D̃i=1)
M∗i︸︷︷︸
r.v.

=
∑

i:Ci=0 M
∗
i︸︷︷︸

r.v.

× 1
(D̃i=1)

=
∑n

i=1 M
∗
i︸︷︷︸

r.v.

× 1(Ci=0) × 1
(D̃i=1)

Ci realized STax =
∑

i:Ci=0 M
∗
i︸︷︷︸

r.v.

× 1
(D̃i=1)︸ ︷︷ ︸
r.v.

=
∑n

i=1 M
∗
i︸︷︷︸

r.v.

× 1(Ci=0) × 1
(D̃i=1)︸ ︷︷ ︸
r.v.

Ex-ante STax =
∑

i:Ci=0 M
∗
i︸︷︷︸

r.v.

× 1
(D̃i=1)︸ ︷︷ ︸
r.v.

=
∑n

i=1 M
∗
i︸︷︷︸

r.v.

× 1(Ci=0)︸ ︷︷ ︸
r.v.

× 1
(D̃i=1)︸ ︷︷ ︸
r.v.

We identify three cases:

1. If we compute the moments of the STax once the control and fraud decisions (Ci and

D̃i, respectively) are observed for all firms, the three STAx definition are perfectly
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identical. In this case, the dummy variables 1(Ci=0) and 1
(D̃i=1)

are not random, and

the single unknown component of STax comes from the amount of tax adjustment M∗i .

2. If we compute the moments of STax once the control decision (Ci) is observed for all

firms, but the fraud decision is unobserved, then the dummy variable 1
(D̃i=1)

is random

and the amount of tax adjustment, M∗i , as well.

3. If we compute the moments of STax ex-ante, i.e. without observing control and fraud

decisions (Ci and D̃i, respectively), then the dummy variables 1(D̃i=1) and 1(Ci=0), and

the amount of tax adjustment, M∗i , are random variables.

Depending on the hypothesis retained on the information structure, the definition of the

moments is not the same. In Appendix A, we detail the expressions of the first two moments

of STax for the three informational hypotheses. To ease the presentation, we retain the most

relevant informational hypothesis and present the results only for this one.

Assumption A5 (information structure) We assume that we evaluate the moments of

the aggregate STax while the control decision has been made by the inspection authority, but

the firm’s fraud decision is not observable.

Proposition 1 Under the Assumptions A1-A5 and the data generator process described by

Equations 1-9, the first two conditional moments of the aggregate STax satisfy:

EX (STax) =
∑
i:Ci=0

EX
(
M∗i | (Ci = 0) ∩

(
D̃i = 1

))
× Pr

(
D̃i = 1|Ci = 0

)
(10)

VX (STax) =
∑
i:Ci=0

VX
(
M∗i | (Ci = 0) ∩

(
D̃i = 1

))
× Pr

(
D̃i = 1|Ci = 0

)
(11)

where X = (Xc : Xd : Xm) is the set of explanatory variables of the model, and EX (.) ≡

E (.|X = x) and VX (.) ≡ V (.|X = x) are the conditional expectation and variance with respect

to X.

Note that under the previous Assumptions A1-A5, the STax of two firms i and j are

conditionally independent, i.e. Cov (STaxi, STaxj |X = x) with i 6= j which explains that the

variance of the aggregate STax is defined as the sum of the variances of individual STax of

the two firms.
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To complete the definition of the theoretical moments of the aggregate STax, we must

characterize the conditional moments EX(M∗i | (Ci = 0) ∩ (D̃i = 1)) and VX(M∗i | (Ci = 0) ∩

(D̃i = 1)), as well as the conditional probability Pr(D̃i = 1|Ci = 0). Let’s start with the

latter, under Assumptions A1-A5 we have:

Pr(D̃i = 1|Ci = 0) = Pr (εd,i > −Xd,iβd|εc,i < −Xc,iβc) (12)

= 1− Pr (εd,i < −Xd,iβd|εc,i < −Xc,iβc)

= 1−
Φ (−Xc,iβc,−Xd,iβd; Σcd)

Φ (−Xc,iβc/σc)

where Σcd corresponds to the covariance (VCV) matrix between of the vector (εc,i, εd,i)
′,

Φ (., .; Σcd) is the cumulative distribution function (cdf) of a bivariate normal distribution

with an expectation equal to 0 and a VCV matrix denoted by Σcd, and Φ (.) is the cdf of the

univariate standard normal distribution.

The conditional expectation of the individual STax can be written as12:

EX(M∗i | (Ci = 0) ∩ (D̃i = 1)) = Xm,iβm + EX (εm,i| (εc,i < −Xc,iβc) ∩ (εd,i > −Xd,iβd))

= Xm,iβm + δcEX (εc,i| (εc,i < −Xc,iβc) ∩ (εd,i > −Xd,iβd))

+δdEX (εd,i| (εc,i < −Xc,iβc) ∩ (εd,i > −Xd,iβd)) (13)

where δc and δd are the partial correlation coefficients of εm,i with respect to εc,i and εd,i,

respectively:

δc =
σmcσ

2
d − σmdσcd

σ2
cσ

2
d − σcd

(14)

δd =
σmdσ

2
c − σmcσcd

σ2
cσ

2
d − σcd

(15)

Accordingly, the conditional variance of individual STax is defined by:

VX(M∗i | (Ci = 0) ∩ (D̃i = 1)) = VX (εm,i| (εc,i < −Xc,iβc) ∩ (εd,i > −Xd,iβd))

= δ2
cVX (εc,i (εc,i < −Xc,iβc) ∩ (εd,i > −Xd,iβd))

+δ2
dVX (εd,i (εc,i < −Xc,iβc) ∩ (εd,i > −Xd,iβd))

+2δcδdCovX (εc,i, εd,i (εc,i < −Xc,iβc) ∩ (εd,i > −Xd,iβd)) (16)

12In fact, the error term εm,i can be defined as follows εm,i = δcεc,i + δdεd,i + µi, with Cov (µi, εc,i) =
Cov (µi, εd,i) = 0. The conditional expectation being a linear operator, we obtain:

EX (εm,i (εc,i > Xc,iβc) ∩ (εd,i > −Xd,iβd)) = δcEX (εc,i| (εc,i > Xc,iβc) ∩ (εd,i > −Xd,iβd))

+δdEX (εd,i| (εc,i > Xc,iβc) ∩ (εd,i > −Xd,iβd))

since EX (µi| (εc,i > Xc,iβc) ∩ (εd,i > −Xd,iβd)) = EX (µi) = 0 by definition.

12



These different results can be summarized by the following two propositions.

Proposition 2 Under the assumptions A1-A5 and the data generator process described by

Equations 1-9, the conditional expectation of the aggregate STax is defined by:

EX (STax) =
∑
i:Ci=0

Xm,iβm

(
1−

Φ (bc,i, ad,i; Σcd)

Φ (bc,i/σc)

)
(17)

+δc
∑
i:Ci=0

EX (εc,i| (εc,i < bc,i) ∩ (εd,i > ad,i))×
(

1−
Φ (bc,i, ad,i; Σcd)

Φ (bc,i/σc)

)
+δd

∑
i:Ci=0

EX (εd,i| (εc,i < bc,i) ∩ (εd,i > ad,i))×
(

1−
Φ (bc,i, ad,i; Σcd)

Φ (bc,i/σc)

)
where the truncation thresholds are defined by bc,i = −Xc,iβc and ad,i = −Xd,iβd.

Proposition 3 Under the Assumptions A1-A5 and the data generator process described by

Equations 1-9, the conditional variance of the aggregate STax is defined by:

VX (STax) = δ2
c

∑
i:Ci=0

VX (εc,i| (εc,i < bc,i) ∩ (εd,i > ad,i))×
(

1−
Φ (bc,i, ad,i; Σcd)

Φ (bc,i/σc)

)
(18)

+δ2
d

∑
i:Ci=0

VX (εd,i| (εc,i < bc,i) ∩ (εd,i > ad,i))×
(

1−
Φ (bc,i, ad,i; Σcd)

Φ (bc,i/σc)

)
+2δcδd

∑
i:Ci=0

CovX (εc,i, εd,i| (εc,i < bc,i) ∩ (εd,i > ad,i))×
(

1−
Φ (bc,i, ad,i; Σcd)

Φ (bc,i/σc)

)
where the truncation thresholds are defined by bc,i = −Xc,iβc and ad,i = −Xd,iβd.

As soon as we know the value of the parameters βc, βd, βm and Σ, the results of the

propositions (2) and (3) allow us to build a forecast of the aggregate STax according to the

characteristics X = (Xc : Xd : Xm) of the uncontrolled firms i : Ci = 0, as well as a confidence

interval on this forecast.

The forecast of aggregate STax, denoted ŜTax, and the 1− α% confidence interval asso-

ciated with this forecast are defined by:

ŜTax = EX (STax) (19)

IC1−α =
[
EX (STax)± Φ−1

(
1− α

2

)√
VX (STax)

]
(20)

These formulas are then used in Monte Carlo simulations and then on real data to estimate

the aggregate STax.
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2.4 Comments

When control and fraud decisions are not linked, more precisely if ρcd = 0, the formulas

reported in Propositions 2 and 3 include the inverse of the Mills ratio. Indeed, if ρcd = 0, we

have:

EX (STax) =
∑
i:Ci=0

Xm,iβm (1− Φ (ad,i/σd))

+δc
∑
i:Ci=0

EX (εc,i|εc,i < bc,i)× (1− Φ (ad,i/σd))

+δd
∑
i:Ci=0

EX (εd,i|εd,i > ad,i)× (1− Φ (ad,i/σd))

=
∑
i:Ci=0

Xm,iβm (1− Φ (ad,i/σd))− δc
∑
i:Ci=0

σc
φ (bc,i/σc)

Φ (bc,i/σc)
× (1− Φ (ad,i/σd))

+δd
∑
i:Ci=0

σd
φ (ad,i/σd)

1− Φ (ad,i/σd)
× (1− Φ (ad,i/σd)) (21)

In the general, when case ρcd 6= 0, the expression of the conditional moments of the

tax adjustment M∗i involves the moments of a bivariate normal law with double truncation.

There is an extensive literature dealing with the moments of the normal distribution under

different truncation conditions (unilateral, bilateral) and the number of variables (univariate,

bivariate, multivariate). Rosenbaum (1961) provides a formula for the moments of a bivariate

distribution with an upper truncation. Khatri and Jaiswal (1963) propose a recurrence relation

to obtain all bivariate moments for the lower truncated case. For the doubly truncated

case, Shah and Parikh (1964) and Dyer (1973) provide recurrence formulas for the bivariate

moments. Begier and Hamdan (1971) give an explicit formula for the moments of doubly

truncated bivariate normal variables with the same lower limit points. This result is extended

by Muthén (1990) to different limits. Horrace (2005) provides different analytical results

for multivariate distributions with single truncation. Using the moment generating function,

Manjunath and Wilhelm (2012) extend these results in the case of a multivariate distribution

with arbitrary double truncation and create also an package tmvtnorm (Manjunath and

Wilhelm, 2010). More recently, Kan and Robotti (2017) propose an alternative approach based

on recurrence relations between integrals that involve the density of the multivariate normal.

These recurrences allow in particular to reduce the computation time for high dimensional

normal laws. The authors propose different codes to compute the moments for multivariate

14



distributions with arbitrary double truncations.

The most important point is that these double-truncated moments can be very differ-

ent from the inverses of Mills ratios which are typically used to address selection problems

(Heckman, 1976, 1979). In Appendix B, we report the general expression of the moments of

a multivariate normal distribution with double truncation (Manjunath and Wilhelm, 2012).

Except for particular cases, there is no analytical form for these moments, this is why we

illustrate this difference through a numerical illustration reported in Appendix C.

3 Monte Carlo Simulations

In this section, we evaluate the validity of our theoretical formulas through Monte Carlo sim-

ulations. First, we compare the simulated mean and empirical variance of the tax adjustment

for the uncontrolled firms corresponding to the first two theoretical moments (expectation

and variance) computed in Section 2.3 (see Equations 17 and 18).

3.1 Parameters Setting

Based on the DGP described by the Equations (1)-(9), parameters are set as follows: we

consider kc = 4 explanatory variables for the equation of the latent variable C∗i , kd = 2

explanatory variables for the equation of the latent variable D∗i , and km = 1 explanatory

variables for the equation of the latent variable M∗i . We assume that the explanatory variables

Xc,i, Xd,i and Xm,i are i.i.d. for all i = 1, . . . , n, and satisfy X = (Xc,i : Xd,i : Xm,i) ∼

N (0, Ikc+kd+km). For each equation, we add a constant in each set of explanatory variables.

The constant value in the equation of C∗i is determined such that the marginal probability

of control is equal to 5%, i.e. E (Ci) = 5%. The constant value in the equation of D∗i is

determined such that the marginal probability of fraud is equal to 10%, i.e. E(D̃i) = 10%.

Finally, the constant value in the equation of M∗i is determined such that the probability

of observing a potential negative tax adjustment is lower than 0.01%. Parameters of other

explanatory variables are defined by integers with an alternation of positive and negative signs

as following:

β′c =
(
−9.27 1 −2 3 −4

)
β′d =

(
−10.13 5 −6

)
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β′m =
(

33.75 7
)

Finally, we assume that the errors σc,i, σd,i and σm,i are correlated and that the variance of

the error term in the tax adjustment equation has a higher variance than the variance of the

error term in the fraud equation, which itself has a higher variance than the variance of the

error term in the control equation. Formally, we assume σ2
m > σ2

d > σ2
c and set the values of

the variance D and correlation R matrices to:

D =


√

2 0 0

0
√

2 0

0 0
√

5

 R =

 1 0.8 0.3
0.8 1 0.5
0.3 0.5 1



Σ =

 2.0000 1.6000 0.9487
1.6000 2.0000 1.5811
0.9487 1.5811 5.0000


Given this parametrization, the conditional probability of control for the fraudulent firms is

equal to 5.30%, while the conditional probability of control for the non-fraudulent firms is of

4.61%. This configuration also implies that the average ratio of effective adjustments to the

aggregate STax is equal to 6%.

3.2 Results based on one simulation

We simulate the latent variables C∗i , D
∗
i , M

∗
i as well as the variables Ci, D̃i and Mi for all

firms i ∈ {1, . . . , n} of the population, with n = 10, 000. As a reminder, in this simulation

exercise we assume that the fraud indicator D̃i is observable, which is obviously not the case

when we try to estimate the parameters of the model (see Section 4).

Contrary to what happens in reality, we can observe the realizations of the potential

amount of tax adjustment M∗i for all firms, including those that have not been audited. From

these observations, we can infer a realization of STax for all unaudited firms, which is positive

for defrauding firms and zero for others. The realization of STax for an uncontrolled firm

that commits fraud is written as13:

staxi = m∗i × 1(ci=0) × 1
(d̃i=1)

= exp (xm,iβm + εm,i)× 1(ci=0) × 1
(d̃i=1)

(22)

The simulated aggregate STax is then equal to:

stax =
n∑
i=1

staxi =

n∑
i=1

exp (xm,iβm + εm,i)× 1(ci=0) × 1
(d̃i=1)

(23)

13By convention, if we write the realizations of the random variables in lower case.
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In Figure 2, we plot the amounts of notional tax adjustments m∗i (in red) and the amounts

of actual tax adjustments mi (in blue) obtained for a particular simulation. For this simula-

tion, 1, 038 firms actually defraud (the empirical frequency of fraud is equal to 10.38%) and

468 firms were audited (the empirical frequency of auditing is equal to 4.68%). Out of the

1, 038 fraudulent firms, 55 were controlled (5.30%) and 983 were not controlled (94.70%). In

this simulation, the sum of the effective tax adjustments
∑n

i=1mi is equal to 1, 867, while the

realized aggregate STax (stax =
∑n

i=1 staxi) is equal to 33, 796, implying a ratio of 5.52%.

Figure 2: Amount of true and realized tax adjustment.

In the top panel of Figure 3, we represent the distribution of individual STax for the

9, 532 firms that were not controlled. A very large majority of these firms did not defraud and

have a zero STax. In the bottom panel, we represent the distribution of individual STax for

the 983 firms that actually defrauded among these firms that were not controlled. For these

firms, the mean of the individual STax is 34.38 and the variance is equal to 53.45.

In this simulation, we can check the validity of our forecast and confidence interval formulas

on the aggregate STax. By applying the formulas from Equations 17 and 18, we have ŜTax =

EX (STax) = 33, 420, VX (STax) = 1590, and IC95% = [33, 342; 33, 498]. In this case, the

realization of the aggregate STax, i.e. stax = 33, 796, is relatively close to the realization of
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Figure 3: Distribution of realized individual STax.

the STax expectation, even if this value does not belong to the 95% confidence interval.

The top panel of Figure 4 displays the distribution of individual STax for the 9, 532 firms

that were not controlled, while the bottom panel represents the distribution for the 983 firms

that did defraud among them. First, we observe that the distributions are very close, which

confirms the validity of our predictions. However, there is a difference: in reality all the 9, 532

firms have a zero STax because fraud is not observable for the uncontrolled entities. In the

current DGP, the STax expectation of uncontrolled fraudulent firms is different from zero

since it is the product of a conditional expectation Mi by a probability of fraud, which even

if correctly estimated, are never zero. Therefore, the values of the expectation for these firms

are small but not zero. This explains the difference on the left of the two distributions.

Figure 5 shows observed individual staxi (y-axis) compared to the conditional expectations

EX (STaxi) (x-axis), for all uncontrolled firms. We observe that for many uncontrolled firms

the effective STax is zero because they did not commit fraud, whereas the model tends to

assign them a non-zero STax expectation due to their probability of fraud and the notional

amount expectation. Despite this caveat, the model performs well for all firms that did
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Figure 4: Histogram of realized and predicted individual STax.

defraud.

3.3 Results based on repeated simulations

We now repeat the previous experiment 1, 000 times. For each run, we keep the aggregate

STax (stax =
∑n

i=1 staxi) and the forecast of the aggregate STax defined by its conditional

expectation ŜTax = EX (STax). Figure 6 represents the histograms of the realizations and

the predictions obtained for the 1, 000 simulations. We observe that the distributions are very

close.

Figures 7 and 8 display the empirical densities estimated by kernel estimators of the

densities of the realized STax and predicted STax. These distributions are also very close,

which confirms the validity of the formulas for the STax expectation (Equation 17).

Finally, Figure 9 displays the scatter plot of the realizations and the predictions of ag-

gregate STax. This diagram confirms the goodness of fit captured by the STax expectation

(Equation 17).
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Figure 5: Scatter plot of individual STax and their forecasts.

4 Estimation

This section presents the approach used to estimate the kc + kd + km + 4 parameters denoted

θ = (β′c β
′
d β
′
m vech (Σ))′.

4.1 Empirical Design

The estimation is realized on the sample observed for the variables {Ci, Di,Mi}. As previously

mentioned, Di is equal to D̃i and represents the fraud decision observed only for controlled

companies. This dichotomous variable Di indicates whether the controlled firms i = 1, 2, . . . , n

has been redressed (Di = D̃i = 1) or not (Di = D̃i = 0) following the control. For the rest

of the paper, the variable Di will be hence associated to the fraud detection. The estimated

model is represented by the equations (24) to (28):

Ci =

{
1 if C∗i = Xc,iβc + εc,i > 0
0 otherwise

∀i = 1, . . . , n (24)

D̃i =

{
1 if D∗i = Xd,iβd + εd,i > 0
0 otherwise

∀i = 1, . . . , n (25)
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Figure 6: Realized and predicted aggregate STax for 1,000 replications.

Figure 7: Distribution of realized aggregate MAG and its probability distribution function of predicted
values.
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Figure 8: Empirical probability distribution function of realized and predicted aggregate STax.

Figure 9: Scatter plot of realized and predicted aggregate STax.
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Note that, Di = D̃i ∀i : Ci = 1,

M∗i =

{
Xm,iβm + εm,i if D̃i = 1
0 otherwise

∀i = 1, . . . , n, (26)

Mi =

{
Xm,iβm + εm,i if Ci = 1 and Di = 1
0 otherwise

∀i : Ci = 1 (27) εc,i
εd,i
εm,i

 ∼ N (0,Σ) (28)

As a reminder, only the variables Ci, Di, and Mi are observable and enter into the construction

of the likelihood of the sample Sn =
{
{Ci}ni=1 {Di,Mi}i:Ci=1

}
. It is also important to note

that the definition of the tax adjustment variable Mi is different from the one used previously,

since it depends here on the (observable) detection Di and not on the latent fraud variable D̃i.

Remark: We assume that the effective tax adjustment Mi and detection Di variables are only

defined for the controlled firms, for which Ci = 1. We do not assume that these variables are

equal to zero for uncontrolled firms, but censored (undefined) when Ci = 0.

In order to better understand the construction of the log-likelihood of the complete system,

we proceed in two steps. First, we will limit ourselves to the estimation of the parameters

of the control and detection equations, which appear in the form of a bi-probit model with

censorship or of a nested probit model with dependence. Second, we add the tax adjustment

equation and complete the likelihood formula. It should be noted that in practice, this two-

step decomposition is not necessary.

4.2 Estimation of the bi-probit model with censorship

Under the aforementioned assumptions, the control and detection decisions can be represented

in the form of a nested Probit structure with dependence (see Figure 10).

It should be noted that while the fraud (D̃i) and control (Ci) decisions are assumed not to

be nested (even if they are linked), this is not true for the detection (Di) and the control (Ci)

variables, which are necessarily nested events. This type of model is unusual, because on the

one hand, nested models have often logit specifications, and on the other hand, dependence is

rarely considered into nested models. This model can also be associated to a bi-Probit model

with censorship on Di for entities for which Ci = 0.
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3.1 Estimation des paramËtres du bi-probit avec censure

Sous ces hypothËses, les dÈcisions de contrÙle et de dÈtection peuvent se reprÈsenter sous la forme

díune structure de type Probit emboitÈ (nested probit) avec dÈpendance (cf. Figure 13). Il
convient de noter que si les dÈcisions de fraude eDi et de contrÙle Ci sont supposÈes non-emboÓtÈes
(mÍme si elles sont liÈes), il níen va pas de mÍme des Èvenements de dÈtection Di et de contrÙle Ci
qui sont nÈcessairement des ÈvÈnements emboitÈs. Ce type de modËle est peu commun, car díune

part les modËles emboitÈs sont plus souvent de type logit et díautre part les modËles emboitÈs sont

rarement avec dÈpendances. Ce modËle correspond aussi ‡ un modËle de type bi-Probit avec
censure des observations de Di des entreprises pour lesquelles Ci = 0.

Figure 13: Un modËle de type probit emboitÈ (nested probit)

On cherche ‡ estimer le vecteur de paramËtres ! =
"
"0
c "

0
d #cd

#0 associÈs aux Èquations de con-

trÙle et de dÈtection. Pour cela, Ècrivons la log-vraisemblance de líÈchantillon eSn =
$

fCigni=1 fDigi:Ci=1
%

associÈe aux ÈvÈnements de dÈtection et de contrÙle.

`n (!;C;D) =
nX

i=1

ln (Pr (Ci = 0))# 1(Ci=0) (50)

+
nX

i=1

ln (Pr (Di = 0jCi = 1)# Pr (Ci = 1))# 1(Di=0)

+
nX

i=1

ln (Pr (Di = 1jCi = 1)# Pr (Ci = 1))# 1(Di=1)
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Figure 10: Nested Probit structure with dependence

The likelihood function associated to the sample of detected and controlled entities, S̃n ={
{Ci}ni=1 {Di}i:Ci=1

}
and used to estimate the vector of parameters θ = (β′c β

′
d ρcd)

′ is written

as follows:

`n (θ;C,D) =
n∑
i=1

ln (Pr (Ci = 0))× 1(Ci=0)

+
n∑
i=1

ln (Pr (Di = 0|Ci = 1)× Pr (Ci = 1))× 1(Di=0)

+
n∑
i=1

ln (Pr (Di = 1|Ci = 1)× Pr (Ci = 1))× 1(Di=1) (29)

The log-likelihood can equivalently take the form:

`n (θ;C,D) =
∑
i:Ci=0

ln (Pr (Ci = 0)) +
∑
i:Di=0

ln (Pr ((Di = 0) ∩ (Ci = 1)))

+
∑
i:Di=1

ln (Pr ((Di = 1) ∩ (Ci = 1))) (30)

Its elements are then made explicit as a function of the cdf of a bivariate normal distribution

denoted Φ2 (u, v; ρ), such as:

Φ2 (u; v; ρ) = Pr ((U < u) ∩ (V < v)) (31)

where the vector (U V ) admits N (0,Σ2) as joint distribution, with Σ2 = [1 ρ ; ρ 1]. Note

that, just as in the case of a probit, we normalize the variances to one.
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Remark: If one wants to write Pr ((U < u) ∩ (V > v)), in this case

Pr ((U < u) ∩ (V > v)) = Pr ((U < u) ∩ (−V < −v)) = Φ2 (u;−v;−ρ) (32)

because passing from V to −V implies that cor (U,−V ) = −ρ.

In order to control for these sign changes, we introduce two new dichotomous variables

taking values between 1 and −1, such that:

qc,i = 2Ci − 1 =

{
1 if Ci = 1
−1 if Ci = 0

(33)

qd,i = 2Di − 1 =

{
1 if Di = 1
−1 if Di = 0

(34)

Hence, the first term of the log-likelihood becomes:

Pr (Ci = 0) = Pr

(
εc,i
σc

< −Xc,iβc
σc

)
= Φ

(
−Xc,iβ̃c

)
= Φ

(
qc,iXc,iβ̃c

)
∀i : Ci = 0 (35)

with β̃c = βc/σc, as qc,i = −1 for all uncontrolled firms (i.e., Ci = 0). Similarly:

Pr ((Di = 0) ∩ (Ci = 1)) = Pr

((
εd,i
σd

< −
Xd,iβd
σd

)
∩
(
εc,i
σc

> −Xc,iβc
σc

))
(36)

= Pr
((
ε̃d,i < −Xd,iβ̃d

)
∩
(
−ε̃c,i < Xc,iβ̃c

))
= Pr

((
ε̃d,i < qd,iXd,iβ̃d

)
∩
(
−ε̃c,i < qc,iXc,iβ̃c

))
= Φ2

(
qc,iXc,iβ̃c; qd,iXd,iβ̃d;−ρcd

)
∀i : Di = 0, Ci = 1

with β̃d = βd/σd, ε̃c,i = εc,i/σc, and ε̃d,i = εd,i/σd. For all undetected but controlled entities

(Di = 0, Ci = 1) we have qc,i = 1 and qd,i = −1.

The multiplication of the index Xc,iβ̃c by qc,i does not allow us to reverse the sign, rea-

son for which we are forced to change the sign of the correlation in the cdf of the normal

distribution. Finally, concerning the third term, it can be written as following:

Pr ((Di = 1) ∩ (Ci = 1)) = Pr

((
εd,i
σd

> −
Xd,iβd
σd

)
∩
(
εc,i
σc

> −Xc,iβc
σc

))
(37)

= Pr
((
−ε̃d,i < Xd,iβ̃d

)
∩
(
−ε̃c,i < Xc,iβ̃c

))
= Pr

((
−ε̃d,i < qd,iXd,iβ̃d

)
∩
(
−ε̃c,i < qc,iXc,iβ̃c

))
= Φ2

(
qc,iXc,iβ̃c; qd,iXd,iβ̃d; ρcd

)
∀i : Di = 1, Ci = 1
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because we have qc,i = 1 and qd,i = 1 for all controlled and detected individuals (Di = 1, Ci =

1). Note that the correlation between the transformed variables −ε̃d,i and −ε̃c,i is equal to ρ.

The log-likelihood of the bi-Probit model with censorship associated with the control and

detection decisions can be written as:

`n (θ;C,D) =
∑
i:Ci=0

ln
(

Φ
(
qc,iXc,iβ̃c

))
+
∑
i:Di=0

ln
(

Φ2

(
qc,iXc,iβ̃c; qd,iXd,iβ̃d;−ρcd

))
+
∑
i:Di=1

ln
(

Φ2

(
qc,iXc,iβ̃c; qd,iXd,iβ̃d; ρcd

))
(38)

where Φ (u) represents the cdf of a standard normal distribution, and Φ2 (u; v; ρ) the cdf of a

bivariate normal distribution N (0,Σ2), with Σ2 = [1 ρ ; ρ 1].14

The maximum likelihood estimator of the vector θ = (β′c β
′
d ρcd)

′ can be hence defined as:

θ̂1 = arg max
θ∈Θ

`n (θ;C,D) (39)

This estimator will be mainly used as an initial condition for estimating the maximum

likelihood of the complete system. For this, it remains now to include the tax adjustment

equation in the model.

4.3 Estimation of the complete system by maximum likelihood

Let us consider now the complete model defined by equations (24) to (28). The objective

is to estimate the full vector of kc + kd + km + 6 parameters corresponding to the three

equations of control, detection, and tax adjustment, and to the parameters of the covariance

matrix, denoted θ = (β′c β
′
d β
′
m ρcd ρcm ρdm σm)′. The structure of the model (see Figure

11) is similar to a model with a censorship on the tax adjustment Mi, similar to a Type II

Tobit model introduced by Amemiya (1984). The censorship mechanism is represented by a

bi-Probit model itself censored, or equivalently by a nested Probit with dependencies.

14In the absence of censorship, i.e. if the fraud variable D̃i had been observed for all individuals, the
log-likelihood would become:

`n (C,D) =

n∑
i=1

ln
(

Φ2

(
qc,iXc,iβ̃c; qd,iXd,iβ̃d; ρi

))
with ρi = qc,iqd,iρ a correlation term whose sign changes depending on the values of the variables Di and Ci

observed for each individual.
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3.2 Estimation du systËme complet par maximum de vraisemblance

ConsidÈrons ‡ prÈsent le modËle complet dÈÖni par les Èquations (45) ‡ (49). On cherche ‡ es-

timer le vecteur complet des kc + kd + km + 6 paramËtres des Èquations de contrÙle, de dÈtec-

tion, et de redressement ainsi que les paramËtres de la matrice de variance covariance, notÈ

! =
!
"0
c "

0
d "

0
m "cd "cm "dm #m

"0. La structure du modËle (cf. Figure 14) síapparente ‡ un modËle

de censure sur le redressement Mi de type Tobit II (Amemiya (1984)) avec un mÈcanisme de
censure reprÈsentÈ par un modËle bi-probit lui-mÍme censurÈ, ou de faÁon Èquivalente un modËle

probit emboÓtÈ avec dÈpendances.

Figure 14: ModËle tobit de type II avec censure de type probit emboitÈ (nested probit)

Remarque : Le fait de considÈrer un mÈcanisme de censure basÈ sur líobservation de Di = 1 (tobit

type II) et non directement sur le signe de M"
i (tobit type I) fait que líon peut observer des montants

e§ectifs de redressement nÈgatifs.

Tobit type II : Mi =

(
Xm;i"m + "m;i

0

si Di = 1

sinon
8i : Ci = 1 (61)

Tobit type I : Mi =

(
Xm;i"m + "m;i

0

si M"
i > 0

sinon
8i : Ci = 1 (62)
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Figure 11: Design of the complete model

Remark: Considering a censorship mechanism based on the observation of Di = 1 (Type

II Tobit) and not directly on the sign of M∗i (Type I Tobit) means that we can observe also

effective amounts of negative recovery or tax adjustment.

Type II Tobit: Mi =

{
Xm,iβm + εm,i if Di = 1
0 otherwise

∀i : Ci = 1 (40)

Type I Tobit: Mi =

{
Xm,iβm + εm,i if M∗i > 0
0 otherwise

∀i : Ci = 1 (41)

The log-likelihood of the sample Sn =
{
{Ci}ni=1 {Di,Mi}i:Ci=1

}
associated with the control,

detection and adjustment events can be written as follows:

`n (θ;C,D,M) =
∑
i:Ci=0

ln (Pr (Ci = 0)) +
∑

i:Mi=0

ln (Pr ((Di = 0) ∩ (Ci = 1))) (42)

+
∑

i:Mi 6=0

ln
(
fM |C,D (M∗i |D∗i > 0, C∗i > 0)× Pr ((Di = 1) ∩ (Ci = 1))

)
The first two terms of the likelihood, i.e., ln (Pr (Ci = 0)) and ln (Pr ((Di = 0) ∪ (Ci = 1))),

are identical to those already presented previously.

It remains to characterize the conditional density of Mi knowing that the entity has been

controlled and detected as fraudulent, i.e., D∗i > 0 and C∗i > 0, noted fM |C,D (u, v) . The

latter has the following form:

fM |C,D (M∗i |D∗i > 0, C∗i > 0) = Pr ((Di = 1) ∩ (Ci = 1))−1
∫ ∞

0

∫ ∞
0

fC,D,M (C∗i , D
∗
i ,M

∗
i ) dC∗i dD

∗
i
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with fC,D,M (u, v, w) the pdf of the joint distribution of the triplet (C∗i , D
∗
i ,M

∗
i ). Thus, the

last term of the likelihood of equation (43) becomes:

fM |C,D (M∗i |D∗i > 0, C∗i > 0)×Pr ((Di = 1) ∩ (Ci = 1)) =

∫ ∞
0

∫ ∞
0

fC,D,M (C∗i , D
∗
i ,M

∗
i ) dC∗i dD

∗
i

The problem here is that C∗i and D∗i are not observable. To solve the problem, Amemiya

(1984) proposes to reverse the conditioning issue so as to work on the distribution of the

observed variables C∗i and D∗i conditional on the observation of M∗i = m∗i , as follows:∫ ∞
0

∫ ∞
0

fC,D,M (C∗i , D
∗
i ,M

∗
i ) dC∗i dD

∗
i = fM (M∗i )

∫ ∞
0

∫ ∞
0

fC,D|M (C∗i , D
∗
i |M∗i ) dC∗i dD

∗
i

= fM (M∗i ) Pr (C∗i > 0, D∗i > 0|M∗i ) (43)

where fM (u) denotes the marginal distribution of variable M∗i and fC,D|M (u, v) is the pdf

of the conditional distribution of the couple (C∗i , D
∗
i ), knowing that M∗i = m∗i . Under the

assumption that the vector (C∗i , D
∗
i ,M

∗
i ) is normally distributed, we know that the marginal

and conditional distributions are also normal with:

fM (M∗i ) =
1

σm
φ

(
M∗i −Xm,iβm

σm

)
(44)

with φ (.) the pdf of a standard Normal distribution. Concerning the conditional distribution

fC,D|M (u, v) , we can show that:(
C∗i
D∗i

)
|M∗i =m∗i

∼ N
(
µCD|M,i,ΣCD|M

)
(45)

ΣCD|M = ΣCD −
1

σ2
m

ΣCD,MΣ′CD,M (46)

µCD|M,i = µCD,i +
1

σ2
m

ΣCD,M (M∗i −Xm,iβm) (47)

where the vectors µCD,i, ΣCD,M and ΣCD are defined as:

µCD,i =

(
Xc,iβc
Xd,iβd

)
ΣCD =

(
σ2
c σcd

σcd σ2
d

)
ΣCD,M =

(
σcm
σdm

)
(48)

Hence, if we denote by Φ2

(
u; v; ΣCD|M

)
the cdf of the bivariate normal distributionN

(
0,ΣCD|M

)
,

we show immediately that:

fM (M∗i ) Pr (C∗i > 0, D∗i > 0|m∗i ) = fM (M∗i ) Pr ((ε̃c,i > −µc,i) ∩ (ε̃d,i > −µd,i) > 0|M∗i )

= fM (M∗i ) Pr ((−ε̃c,i < µc,i) ∩ (−ε̃d,i < µd,i) |M∗i )

=
1

σm
φ

(
M∗i −Xm,iβm

σm

)
Φ2

(
µc,i;µd,i; ΣCD|M

)
(49)

Finally, we can deduce the log-likelihood of the complete system.
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Definition 2 The log-likelihood of the full model associated to the control, detection and

recovery/adjustment decisions is written:

`n (θ;C,D,M) =
∑
i:Ci=0

ln
(

Φ
(
qc,iXc,iβ̃c

))
+
∑

i:Mi=0

ln
(

Φ2

(
qc,iXc,iβ̃c; qd,iXd,iβ̃d;−ρcd

))
+
∑

i:Mi 6=0

ln

(
1

σm
φ

(
M∗i −Xm,iβm

σm

)
Φ2

(
µc,i;µd,i; ΣCD|M

))
(50)

where Φ (u) is the cdf of the standard normal distribution, Φ2 (u; v; ρ) the cdf of the bivariate

normal N (0,Σ2) with Σ2 = [1 ρ ; ρ 1], and Φ2

(
u; v; Σ̃2

)
the cdf of the bivariate normal

N
(
0, Σ̃2

)
.

Note that the coefficients σc and σd are not identifiable, but that the variance σ2
m of the

error term of the adjustment equation is identifiable. The maximum likelihood estimator of

the vector θ = (β′c β
′
d β
′
m ρcd ρcm ρdm σm)′ is then defined by:

θ̂ = arg max
θ∈Θ

`n (θ;C,D,M) . (51)

4.4 Validation of the Maximum Likelihood Estimation

Monte Carlo simulations are used in order to show the validity of the log-likelihood function

(equation 50). Thus, we take the data generating process presented in Section 3, and simu-

late from the equations (24) to (28) the unobservable variables (C∗i , D
∗
i ,M

∗
i ), as well as the

observable ones (Ci, Di,Mi), and this for a large number of firms (n = 1, 000, 000).

As a reminder, we consider kc = 4 explanatory variables for the equation of the latent

variable C∗i , kd = 2 explanatory variables for the equation of the latent variable D∗i and

km = 1 explanatory variables for the equation of the latent variable M∗i . We assume that

the explanatory variables Xc,i, Xd,i and Xm,i are i.i.d. for all i = 1, . . . , n, and verify X =

(Xc,i : Xd,i : Xm,i) ∼ N (0, Ikc+kd+km). The parameters have been set so that the conditional

probability of control for fraudsters is equal to 5.30%, while the conditional probability of

control for non-fraudsters is equal to 4.61%. This configuration implies also that the average

ratio of effective adjustments on the global STax is equal to 6%. As for the parameters, they

have been fixed to the following values:

β′c =
(
−9.27 1 −2 3 −4

)
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β′d =
(
−10.13 5 −6

)
β′m =

(
33.75 7

)
The covariance matrix of the error terms has been calibrated as follows (see Section 3 for

more details):

Σ =

 2.0000 1.6000 0.9487
1.6000 2.0000 1.5811
0.9487 1.5811 5.0000


In addition, we recall that only the ratios βc/σc and βd/σd are identifiable, i.e., can be esti-

mated. The variances σ2
c and σ2

d of the control and detection equations are not identifiable.

By convention, they are fixed to one. On the other hand, the correlations and the variance

σ2
m of the error term corresponding to the adjustment equation are identifiable and can be

estimated.

As we saw, the log-likelihood of the full model (Equation 50) is strongly nonlinear in the

parameters and not globally concave. Therefore, we may deal with problems of numerical

convergence in the optimization process (See Lee, 2020). In order to limit these issues, we

propose a 3-steps procedure for setting the initial conditions.

Step 1 Estimation of the two univariate Probit models associated with the control decision

(on all firms) and the detection decision (on controlled firms only), without taking into

account the selection bias.

Step 2 Maximization of the log-likelihood of the bi-Probit model with censorship on the control

and detection decisions, considering β̂c and β̂d, as initial conditions. We note θ̂1 the ML

estimator thus obtained.

Step 3 Maximization of the log-likelihood of the complete model (Equation 50), which gives the

estimates of the parameters β′c, β
′
d, β
′
m, ρcd, ρcm, ρdm et σm, considering θ̂1 for the initial

condition.

The MLE results are reported in Table (2) for the nested Probit model and in Table (3) for

the full model. Results show that the ML estimation approach allows not only to estimate the

correlations between shocks, but also to obtain unbiased estimates of the model parameters.15

15Appendix D shows that in the case of non-linear models (such as the probit model used for the detection
equation) taking into account the selection bias via Heckman’s method is not valid (Heckman, 1976, 1979).
Not only it does not allow to take into account different correlations, but it also leads to biased parameter
estimates.
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Table 2: Nested Probit model estimated by maximum likelihood

This table reports the estimated coefficients by maximum likelihood issued of the nested probit model
and their respective true value (ratios).

Estimated True

Control β′c/σc -6.5175 -6.5549
Equation 0.7049 0.7071

-1.4062 -1.4142
2.1029 2.1213
-2.8079 -2.8284

Detection β′d/σd -7.1433 -7.1630
Equation 3.5263 3.5355

-4.2571 -4.2426

Correlation ρcd 0.7683 0.8000

Table 3: Full model estimated by maximum likelihood

This table reports coefficient estimates by maximum likelihood issued of the complete model and their
respective true value (ratios).

Estimated True

Control β′c/σc -6.5172 -6.5549
Equation 0.7049 0.7071

-1.4059 -1.4142
2.1029 2.1213
-2.8079 -2.8284

Detection β′d/σd -7.1433 -7.1630
Equation 3.5034 3.5355

-4.2350 -4.2426

Adjustment β′m 33.6295 33.7500
Equation 7.0433 7.0000

Correlation ρcd 0.7738 0.8000
ρcm 0.3004 0.3000
ρdm 0.5626 0.5000

Error term std dev. of the adjustment equation σm 2.2651 2.2361

5 Empirical application

This section presents the estimation results obtained using real data provided by the MSA.

We start by setting robust initial conditions, we implement then an approach to identify the

best configurations of the three equations of the model, and calculate finally the tax shortfall.
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Several configurations and specifications of the complete model were considered and tested.

5.1 Data

The econometric modeling is based on real data collected by the MSA at the end of regu-

lar controls carried out on firms in the agricultural system. The database matches all data

retained for the scope of the accounting control of 2014. The data were collected by differ-

ent local control entity funds and consolidated at the national level by the Department of

Statistics, Studies and Funds of the control entity central fund.

The initial database regroups data for 187 646 firms and contains 78 variables. Never-

theless, in agreement with the control entity and based mainly on the expert knowledge, we

retained only 3 explanatory variables for the control equation, 3 variables for the detection

equation and 4 variables for the adjustment equation. Table 4 presents simple descriptive

statistics to better understand the scope of the study.

Table 4: Descriptive statistics

Geographic coverage Metropolitan France
Total number of firms 187,646

Total number of controlled firms 5,468
Observed frequency of control 2.91%

Total number of detected fraudulent firms 1,614
Observed frequency of fraud (among all firms) 0.86%
Observed frequency of fraud (among the controlled firms) 29.52%

Percentage of the applied tax adjustment with respect to
the total social contribution amount recorded for
controlled firms 2.10%

We observe that 2.92% of the total taxpayers made the object of a control. Fraud was

detected for 29.52% of the firms audited and corrective actions were applied. This proportion

should not be generalized to the entire sample (0.86%), since, as already mentioned, the

decision of control is not random, but based on internal considerations. The amount of

detected fraud represents 2.10% of the total amount of social security contributions recorded

for the firms subject to an audit. For the uncontrolled firms (the remaining 93% of the sample)
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an estimation of the tax shortfall or the tax adjustments that could have been imposed on firms

having defrauded if they have been effectively audited and detected by the control authority,

have to be estimated by the econometric model. For reasons of confidentiality, all results are

presented in relative terms.

5.2 Expert specification

As explained in the previous section, the log-likelihood of the complete model is strongly non-

linear in the parameters and not globally concave. In order to limit that numerical convergence

problems appear in the optimization of the log-likelihood, a three-step approach to setting the

initial conditions has been adopted (see Section 4). In other words, we have a trade off between

feasibility and optimality. While the research of optimal models based on statistical criteria

(area under the ROC curve, coefficient of determination) leads to select models which do not

converge, we rely on expert knowledge for reducing the number of explanatory variables. With

reasonable losses in terms of quality of adjustments (compared to the optimal models), these

parsimonious models contain four explanatory variables (k1) for the control equation, five

variables (k2) for the detection equation and four variables (k4) for the adjustment equation.

These three specifications are different: (i) the control decision is explained by the total

amount of contributions declared by the firm, the number of employees who are physically

present over the period, the percentage of seasonal employees with respect to the total number

of contracts; (ii) the fraud decision is explained by the total amount of contributions declared

by the firm, the number of employees who are physically present over the period, the percent-

age of exempted contributions ; (iii) the adjustment equation is explained by the total amount

of contributions declared by the firm, the age of the firm, a dummy variable capturing the

firm’s membership in segment 1 of the external control plan, a dummy variable capturing the

firm’s membership in segment 2 of the external control plan. Results are reported in the Table

5 and show the proportion of the estimated tax shortfall in relation to the annual revenue of

the MSA. As a robustness check, we maintain the same three specifications but on the scope

of the accounting control of 2015 and 2016. The estimated STax is equal to 1.5% for the year

2014 and 2015, and 1.4% for the year 2016.

Finally, the estimation and calculation of STax are also done on datasets including nega-

tive values for the amount of the adjustment. The previous expert specification is carried out
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Table 5: Estimated STax

% of STax to the annual revenue

2014 k1 = 4, k2 = 5, k3 = 4 1.5%
2015 k1 = 4, k2 = 5, k3 = 4 1.5%
2016 k1 = 4, k2 = 5, k3 = 4 1.4%

on these new database as well, and results are consistent with those obtained previously.

6 Conclusion

The main goal of this paper is to estimate the tax shortfall defined as the potential sum of the

tax adjustments that could have been imposed on firms having defrauded (or made erroneous

social declarations), if they had been effectively checked, whereas they were not in reality. To

this end, we define first the shortfall in tax revenue from a statistical point of view, and then

we validate the methods used to estimate such an amount. To highlight the tractability of the

theoretical approach proposed, we use Monte Carlo simulations before relying on real data.

An empirical application is finally performed on real data for the estimation of the tax

shortfall on two different periods. An approach based both on statistical indicators and

expert knowledge is designed to identify the best configurations of the model, and finally the

tax shortfall is calculated for each of the configurations retained. The results show that the

estimated STax represents 1.5% of the total annual revenue of the MSA. The results are in

line with the expectations of the control body and the main conclusions of the study reinforced

by a robustness check analysis.
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Appendix A STax moments based on the informational struc-
ture hypothesis

Case 1: Complete information.

Once the control Ci and fraud D̃i decisions are observed for all firms, the aggregate STax can

be deduced as follows:

STax =
∑

i:(Ci=0)∩(D̃i=1)

M∗i︸︷︷︸
r.v.

=
∑
i:Ci=0

M∗i︸︷︷︸
r.v.

× 1
(D̃i=1)

=
n∑
i=1

M∗i︸︷︷︸
r.v.

× 1(Ci=0) × 1
(D̃i=1)

(A1)

where the variable M∗i is random. Under the Assumptions A1-A5 and the data generating

process (DGP) described by equations 1-9, the conditional moments of the aggregate STax

verifies:

EX (STax) =
∑

i:(Ci=0)∩(D̃i=1)

EX
(
M∗i | (Ci = 0) ∩

(
D̃i = 1

))
(A2)

VX (STax) =
∑

i:(Ci=0)∩(D̃i=1)

VX
(
M∗i | (Ci = 0) ∩

(
D̃i = 1

))
(A3)

where the expressions of the conditional moments EX
(
M∗i | (Ci = 0) ∩

(
D̃i = 1

))
and

VX
(
M∗i | (Ci = 0) ∩

(
D̃i = 1

))
are similar to those reported in Equations (13) and (16).

Case 2: Observed control and unobserved fraud decisions.

Once the control decision Ci are observed for all firms, the aggregate STax is defined by the

following formula:

STax =
∑
i:Ci=0

M∗i︸︷︷︸
r.v.

× 1
(D̃i=1)︸ ︷︷ ︸
r.v.

=

n∑
i=1

M∗i︸︷︷︸
r.v.

× 1(Ci=0) × 1
(D̃i=1)︸ ︷︷ ︸
r.v.

(A4)

where the variables M∗i and D̃i are random. Under the assumptions A1-A5 and the DGP

described by equations 1-9, the conditional moments of the aggregate STax verifies:

EX (STax) =
∑
i:Ci=0

EX(M∗i | (Ci = 0) ∩ (D̃i = 1))× Pr(D̃i = 1|Ci = 0) (A5)

VX (STax) =
∑
i:Ci=0

VX(M∗i | (Ci = 0) ∩ (D̃i = 1))× Pr(D̃i = 1|Ci = 0) (A6)

Case 3: Unobserved control and fraud decisions.

If control decisions Ci and fraud decisions D̃i are not observed, the aggregate STax is defined
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as follows:

STax =
∑
i:Ci=0

M∗i︸︷︷︸
r.v.

× 1
(D̃i=1)︸ ︷︷ ︸
r.v.

=
n∑
i=1

M∗i︸︷︷︸
r.v.

× 1(Ci=0)︸ ︷︷ ︸
r.v.

× 1
(D̃i=1)︸ ︷︷ ︸
r.v.

(A7)

where the variables M∗i , Ci and D̃i are random. Under the assumptions A1-A5 and the DGP

described by equations 1-9, the conditional moments of the aggregate STax verifies:

EX (STax) =

n∑
i=1

EX(M∗i | (Ci = 0) ∩ (D̃i = 1))× Pr((Ci = 0) ∩ (D̃i = 1)) (A8)

VX (STax) =

n∑
i=1

VX(M∗i | (Ci = 0) ∩ (D̃i = 1))× Pr((Ci = 0) ∩ (D̃i = 1)) (A9)
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Appendix B Moments of a multivariate normal distribution
with double truncature

We consider a random vector X = (x1, . . . , xd) such that X ∼ N (0,Σ). The moments of this

variable of dimension d truncated between a in Rd and b ∈ Rd, such that α = Pr (a ≤ X ≤ b),

are written as:

E (Xi) =
d∑

k=1

σi,k (Fk (ak)− Fk (bk)) (B1)

E (XiXj) = σi,j +
d∑

k=1

σi,k
σj,k (akFk (ak)− bkFk (bk))

σk,k
(B2)

+
d∑

k=1

σi,k
∑
q 6=k

(
σj,q −

σk,qσj,k
σk,k

)
[(Fk,q (ak, aq)− Fk,q (ak, bq))

− (Fk,q (bk, aq)− Fk,q (bk, bq))]

where Fi (x, y) and Fi,j (x, y) are the marginal densities of the truncated laws and the joint

densities such that:

Fi (x) =

b1∫
a1

. . .

bi−1∫
ai−1

bi+1∫
ai+1

. . .

bd∫
ad

ϕα,Σ (x1, . . . , xi−1, x, xi+1, . . . , xd) dxd . . . dxi+1dxi . . . dx1 (B3)

Fk,q (x, y) =

b1∫
a1

. . .

bk−1∫
ak−1

bk+1∫
ak+1

. . .

bq−1∫
aq−1

bq+1∫
aq+1

. . .

bd∫
ad

ϕα,Σ (x, y,x−k,−q) dx−k,−q (B4)

where x−k,−q denotes the vector of dimension (d− 2) defined by

(x1, . . . , xk−1, xk+1, . . . , xq−1, xq+1, . . . , xd)
′, with

ϕα,Σ (x) =

{
ϕΣ(x)
α if a ≤ x ≤ b

0 otherwise
∀i = 1, . . . , n (B5)

where ϕΣ (x) denotes the pdf of the vector normal distribution N (0,Σ). For example, if

d = 3, we have:

F1 (ak) =

b2∫
a2

b3∫
a3

ϕα,Σ (ak, x2, x3) dx2dx3 (B6)

F2 (ak) =

b1∫
a11

b3∫
a3

ϕα,Σ (x1, ak, x3) dx1dx3 (B7)
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F3 (ak) =

b1∫
a11

b2∫
a2

ϕα,Σ (x1, x2, ak) dx2dx3 (B8)

In the case of a double truncation such that aq ≤ xq ≤ bq and ar ≤ xr ≤ br with q 6= r,

Manjunath and Wilhelm (2012) show that the quantity Fq,r (x, y) can be written as a product

of a bivariate standard normal density ϕ (xq, xr) and a normal integral of dimension d − 2,

noted as dimension d− 2, denoted Φd−2:

Fk,q (cq, cr) =

b1∫
a1

. . .

bq−1∫
aq−1

bq+1∫
aq+1

. . .

br−1∫
ar−1

br+1∫
ar+1

. . .

bd∫
ad

ϕα,Σ (xs, cq, cr) dxs (B9)

= α−1ϕ (cq, cr; ρqr) Φd−2 (Aqrs;B
q
rs; Rqr) (B10)

with Rqr the partial correlation matrix for s 6= q 6= r, and

Aqrs = (as − βsq.rcq − βsr.qcr) /
√(

1− ρ2
sq

) (
1− ρ2

sq.r

)
(B11)

Bq
rs = (bs − βsq.rcq − βsr.qcr) /

√(
1− ρ2

sq

) (
1− ρ2

sq.r

)
(B12)

where βsq.r is the partial regression coefficient of xr in the regression of xs on xq and xr, βsr.q

is the partial regression coefficient of xq in the regression of xs on xq and xr. The calculation

of these moments is implemented in the package tmvtnorm (Manjunath and Wilhelm, 2010)

or in the dtmvnmom function of Matlab (Kan and Robotti, 2017).

In the particular case σc = σd = 1, using the results of Rosenbaum (1961) and Muthén

(1990), we can establish analytical results for the expectations:

∆c,i = EX (εc,i| (εc,i > ac,i) ∩ (εd,i > ad,i))

and

∆d,i = EX (εd,i| (εc,i > ac,i) ∩ (εd,i > ad,i))

such that16:

αi∆c,i = φ (ac,i)×

1− Φ

ad,i − ρcdac,i√
1− ρ2

cd

+ρcdφ (ad,i)×

1− Φ

ac,i − ρcdad,i√
1− ρ2

cd

 (B13)

16We do not have analytical results when the variances are different from 1. Similarly, we do not have
analytical results on the variances and covariances with double truncation.
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αi∆d,i = φ (ad,i)×

1− Φ

ac,i − ρcdad,i√
1− ρ2

cd

+ρcdφ (ac,i)×

1− Φ

ad,i − ρcdac,i√
1− ρ2

cd

 (B14)

where α = Pr ((εc,i > ac,i) ∩ (εd,i > ad,i)) = Φ2 (−ac,i;−ad,i; ρcd) denotes the probability asso-

ciated with the truncation. We check that in the case where the shocks εc,i and εd,i are not

correlated (ρcd = 0), the quantities ∆c,i and ∆d,i are the inverse of the Mills ratio, and since

αi = (1− Φ (ac,i))× (1− Φ (ad,i)), it comes:

∆c,i =
φ (ac,i)× (1− Φ (ad,i))

(1− Φ (ac,i))× (1− Φ (ad,i))
=

φ (ac,i)

(1− Φ (ac,i))
= λ (ac,i) (B15)

∆d,i =
φ (ad,i)× (1− Φ (ac,i))

(1− Φ (ac,i))× (1− Φ (ad,i))
=

φ (ad,i)

(1− Φ (ad,i))
= λ (ad,i) (B16)

Indeed, when ρcd = 0, we verify that:

∆c,i = EX (εc,i| (εc,i > ac,i) ∩ εd,i > ad,i) = EX (εc,i| (εc,i > ac,i)) = λ (ac,i) (B17)

But in the case where the shocks εc,i and εd,i are correlated (ρcd > 0), the double truncation

expectations ∆c,i and ∆d,i can be very different from single-truncated expectations based on

Mills ratios.
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Appendix C Numerical Illustration

We assume that: (
εc,i
εd,i

)
∼ N (0,Σ) Σ =

(
1.5 ρ
ρ 3

)
(C1)

We set bc,i = σ1Φ−1 (0.20) = −1.0308 and ad,i = σ2Φ−1 (0.70) = 0.9083. Figure C1 displays

the expectation of ∆c,i and ∆d,i with the function dtmvnmom from Matlab (Kan and Robotti,

2017)17, and truncated expectation are defined by:

EX (εc,i| (εc,i < bc,i)) = −σc
φ (bc,i/σc)

Φ (bc,i/σc)
(C2)

EX (εd,i| (εd,i > ad,i)) = σd
φ (ad,i/σd)

1− Φ (ad,i/σd)
(C3)

We observe that larger the correlation coefficient, higher difference between the Mills ratio

and the expectation with double truncation is. For example, when ρ = 0.6, we get:

EX (εc,i| (εc,i < bc,i) ∩ (εd,i > ad,i)) = −1.4337 against EX (εc,i| (εc,i < bc,i)) = −1.7144

EX (εd,i| (εc,i < bc,i) ∩ (εd,i > ad,i)) = 1.5118 against EX (εd,i| (εd,i > ad,i)) = 2.0074

Figure C1: Mills ratio and expectation with double truncation.

This figure describes to what extent the expectation with a double truncation is different from an
expectation with a simple truncation (Mills ratio).

17Similar results are obtained with the function mtmvnorm from the package tmvtnorm (Manjunath and
Wilhelm, 2010)
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Appendix D Estimation by the Heckman correction method

This section presents the estimation approach based on the Heckman correction method (Heck-

man, 1976, 1979). Given the specificities of the research question, it can be designed around

three steps:

Step 1: We consider all the firms in the sample (i = 1, . . . , n) and we estimate by maximum

likelihood the parameters βc of the probit model related to the firms that have been

controlled:

Ci =

{
1 if C∗i = Xc,iβc + εc,i > 0
0 otherwise

∀i = 1, . . . , n, (D1)

with Pr (Ci = 1|Xc,i) = Φ (Xc,iβc). We denote by β̂c the maximum likelihood estimator

of the vector βc/σc, and by λ1,i = λ(Xc,iβ̂c) the corresponding Mills ratios.

Step 2: We consider only the n1 firms that have been controlled and we estimate by maximum

likelihood the following probit model:

Di =

{
1 if D∗i = Xd,iβd + δλ1,i + εd,i > 0
0 otherwise

∀i : Ci = 1 (D2)

with Pr (Di = 1|Ci = 1,Xc,i,Xd,i) = Φ (Xd,iβd + δλ1,i). Consider β̂d and δ̂ the maxi-

mum likelihood estimators of the vector βd/σd and of the parameter δ. We denote by

λ2,i = λ
(
Xd,iβ̂d + δ̂λ̂1,i

)
the corresponding Mills ratios.

Step 3: We consider the firms that have been controlled and detected as fraudulent and estimate

by ordinary least squares method the following linear model:

Mi = Xm,iβm + γ1λ1,i + γ2λ2,i + vi ∀i : Di = 1, Ci = 1 (D3)

where the parameters γ1 and γ2 are functions of σv. We denote by β̂m, γ̂1 and γ̂2 the

estimators obtained at this stage.

The simulation results shows that 101 079 out of 1 000 000 companies, committed fraud,

50 432 were audited, of which 5 797 had committed fraud and were redressed. The estimated

parameters are reported in Table (D1). The first panel reports the estimated parameters

β̂c/σ̂c of the Probit model associated with the control decision, as well as the true values of
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Table D1: Heckman estimation.

This table reports coefficient estimates by the 3-steps approach of Heckman. The upper panel reports
estimated coefficients for the control equation by using a Probit model. The middle panel reports
estimated coefficients for the detection equation by using a Probit model without Mills ratio, while the
bottom panel reports estimated coefficients for the detection equation by using a Pprobit model with
Mills ratio. Estimated, true (ratios) and true (structural) coefficients are displayed.

Estimated True (ratios) True (structural)

Control -6.5168 -6.5549 -9.2700
Equation 0.7055 0.7071 1.0000

-1.4052 -1.4142 -2.0000
2.1031 2.1213 3.0000
-2.8073 -2.8284 -4.0000

Detection -6.8972 -7.1630 -10.1300
Equation 3.6079 3.5355 5.0000

without Mills ratios -4.3528 -4.2426 -6.0000

Detection -8.0973 -7.1630 -10.1300
Equation 4.0092 3.5355 5.0000

with Mills ratio -4.8436 -4.2426 -6.0000
0.8386 0.8000 1.1314

the ratios βc/σc, and the values of βc (True structural).We observe that the estimators are

very close to true values.18

In the second panel, we report the estimators of the Probit model associated with the

detection estimated only from the controlled firms (Ci = 1) without taking into account the

selection bias (hence, without including Mills ratio). There is a slight shift from the true

values. The shift is quite small because the censorship is not very important, but this result is

not general. Beyond the importance of the lag as such, what is interesting to note is that the

bias is less important than when a Mills ratio is introduced to take into account the selection

bias. In this case, we paradoxically observe a greater bias than when we do not include a

Mills ratio.

These observations show that the introduction of Mills ratio in the Probit model (at Step

2) is not judicious and leads to biased estimators. The Heckman correction method is in fact

only suitable in the case of a linear model (See Chung and Goulias, 1995) and it is no longer

valid in the case of a non-linear model such as the probit model (Greene, 2006). In turn, the

18Recall that the ML estimators are convergent in this case, which means that their realizations tend to be
close to the true values when n goes to infinity.
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Mills ratios at Step 3 are poorly estimated and do not allow to take into account the selection

bias. Following Greene (2006):

“Based on the wisdom in Heckman’s (1979) treatment of the linear model, there seems to

be a widespread tendency (temptation) to extend his approach to other frameworks by mim-

icking his two step approach. Thus, for example, Wynand and van Praag (1981), in an early

application, proposed to fit a probit model with sample selection with the following two steps:

Step 1. Fit the probit model for the sample selection equation. Step 2. Using the selected

sample, fit the second step probit model merely by adding the inverse Mills ratio from the

first step to the main probit equation as an additional independent variable. This approach is

inappropriate for several reason”, Greene (2006), page 1.
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