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Résumé
Cet article propose une étude empirique sur l’effet de différentes méthodes d’apprentissage

automatique (machine learning) dans un contexte de repondération de la non-réponse totale pour
des données d’enquête. Soit U une population de taille N et S un échantillon probabiliste de
taille n tiré dans U selon un plan de sondage aléatoire donné. Dans un contexte de non-réponse
totale, seul un sous-ensemble Sr de l’échantillon S répond à l’enquête. Le but est d’estimer le
total d’une variable d’intérêt y donné par ty =

∑
i∈U

yi. Soit (pk)k∈S les probabilités de réponses. Si

les probabilités de réponse étaient connues, un estimateur sans biais du total serait l’estimateur
par double dilatation, t̂y,exp =

∑
i∈Sr

yi
piπi

où πi désigne les probabilités d’inclusion d’ordre un

de l’invidividu i associées au plan de sondage. Cependant, les probabilités de réponse (pk)k∈Sr

n’étant pas connues en pratique, elles sont estimées au moyen d’un modèle de non-réponse. À
partir de ces estimations des probabilités de réponse, deux estimateurs du total sont considérés :

l’estimateur PSA, t̂y,PSA =
∑
i∈Sr

yi
p̂iπi

, et l’estimateur de Hàjek t̂y,Hajek =
N

N̂
t̂y,PSA où N̂ est

l’estimateur PSA du nombre d’individus dans la population.

Nous présenterons les résultats d’une étude empirique dont le but est de comparer la perfor-
mance de ces deux estimateurs en termes de biais et d’efficacité. Dans un contexte de plan de
sondage stratifié à probabilités inégales, nous avons utilisé plusieurs méthodes afin d’estimer les
probabilités de réponse.

Trois autres méthodes dérivées des estimations obtenues par apprentissage automatique sont
proposées :
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— après avoir fourni un jeu de probabilités estimées (par exemple, par régression logistique),
il est possible de calculer d’autres estimations des probabilités de réponses en utilisant la
méthode des scores (ou groupe homogène de réponse) [HB07]. Les probabilités estimées
servent à créer des groupes d’individus homogènes par rapport à la probabilité estimée
(en triant l’échantillon selon la probabilité estimée et en découpant en K groupes). Pour
chaque groupe homogène, la probabilité de réponse estimée correspond au taux de réponse
observé dans ce groupe. Cette approche permet d’être plus robuste à des problèmes de
mauvaise spécification du modèle de non-réponse.

— il est également possible de combiner plusieurs estimations des probabilités de réponse
provenant de différentes méthodes (CART, SVM et BART par exemple) afin de créer un
jeu de probabilités estimées. Nous considérons deux manières de combiner les estimations
dans le but d’accroître la robustesse des estimateurs :
— estimation robuste basée sur le calage de plusieurs jeux de probabilités estimées.
— estimation robuste basée sur une méthode ensembliste appliquées aux probabilités

estimées.

Les performances de ces estimateurs seront estimées à l’aide du biais relatif Monte-Carlo et du
risque quadratique moyen Monte-Carlo.

Abstract en Anglais
In the context of a survey with unit non-response, reweighting provides estimators correc-

ted for induced bias. Reweighting requires estimating response probabilities based on auxiliary
informations. Machine learning methods can be used to model these probabilities in a flexible
way. An empirical study was performed where the performance of two estimators of the total are
compared according to the machine learning methods used to model the non-response probabi-
lities. We studied, with which machine learning algorithm, score method [HB07] provided more
robust result. We also worked on methods that aggregate several sets of response probabilities
such as calibration.

1 Preliminaries
Surveys are used to get information on variables of interest in a finite population denoted

by U = {1, . . . , N}. This information is computed by considering results available on a subset
of units of the population S called sample. For example, a national statistical institute can use
surveys for the population census : the institute wishes to obtain the total number of people in
France without questioning the whole population. To achieve this, the institute’s interviewers
only consider a sample of households.

Samples are drawn using a probability measure on the set of all subsets of U endowed by the
σ−field generated by it. This measure is called the survey design and it will be denoted by P
in the following. For a given survey design, one can compute first order probability of a unit k,
denoted by πk, which is the probability that k belongs to the sample.

The statistician will be interested in measurable functions of the variable of interest y such as
totals ty :=

∑
k∈U

yk on the whole population. Nevertheless, y is known only for the units of the

sample S and then estimators of ty need to be based on these values and the survey design.

Assuming that all units have a non-zero first order probability (no coverage problem) and answer
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when they are drawn, a unbiased estimator of the total is the so-called Narain-Horvitz-Thompson
estimator [Nar51][HT52] (or π−estimator)

t̂yπ :=
∑
k∈S

yk
πk

=
∑
k∈U

yk
πk
Ik (1)

where Ik stands for the dummy variable of the belonging of k in S.

However, in presence of unit non-response, some individuals from the sample S may decide not
to answer : only units from a subsample Sr ⊂ S answer. This phenomena can lead to bias in
estimations. Unit non-response can be considered as a second survey design given the sample S.
In our work, we made some assumption on this second survey design :

— the second survey design is independent from the sample drawn at the first step.
— the second survey design is based on a Poisson sampling. First order probabilities are

called response probabilities and will be denoted (pk)k∈S. Moreover, these probabilities
can depend on auxiliary informations x. We introduce Rk the dummy variable for unit k
to belong in Sr. This assumption implies that (Rk) are independent : each unit decides
to answer independently.

— We assume that there are no imcompressible non-response ∀k ∈ S, pk > 0.

Rubin [RUB76] proposed a typology of non response mechanisms. Roughly, if response probabili-
ties can be model using variables x that not depend on the variable of interest y then the process
is called missing at random (MAR). In that case, unbiased estimators can be computed using
a non-response model. Otherwise, if these probabilities depend on both, then the mechanism is
called not missing at random (NMAR). This mechanism can lead to severe biais.

In our setting, even if the non response mechanism is MCAR, Narain-Horvitz-Thompson leads
to biased estimators. Nevertheless, under the assumption we provided above, double expansion
estimator defined in (2) is unbiased for the total.

t̂y,exp :=
∑
k∈Sr

yk
πkpk

(2)

However, (pk) are not known and can only be estimated using auxiliary informations. Instead
we introduce propensity adjusted score estimator (PSA estimator) and Hayek estimator of ty
based on estimated response probabilities :

t̂y,PSA :=
∑
k∈Sr

yk
πkp̂k

(3)

t̂y,H :=
N

N̂

∑
k∈Sr

yk
πkp̂k

(4)

where p̂k is the estimation of pk based on the auxiliary informations xk. These estimations
can be done using machine learning algorithms and we propose in this work to compare the
performance of each estimator for several machine learning algorithms.

2 Machine learning algorithms used
As shown in the last section, one needs to estimate response probabilities in order to compute

PSA or Hajek estimator. These probabilities will be estimated using auxiliary informations on
the units sampled. In this section, several algorithms will be introduced. After that, we will
provide some reminders on the score method that produces more robust estimations. In the end
of this part, we will introduce aggregation methods that used response probabilities estimated
by different methods and then provide a new estimation of it.
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2.1 Machine learning methods
In order to get an estimation of response probabilities, one can use machine learning methods.

We will use the conventional notation in this section : yk will denote the variable we want to
predict and xk the covariates used in the model.

2.1.1 Logistic regression

Logistic regression is a parametric model that explains a binary variable as a function of
explanatory variables (discrete or continuous). Logistic regression can be seen as an empirical
risk minimization problem with the loss ψ : ψ(f(x),y) = log(1 + e−yf(x)) where f is a linear
function of x. For more information, one can refer to chapter 4.4 of [HTF01].

2.1.2 Logistic regression with lasso penalization

Logistic regression with lasso penalization is the same problem than logistic regression except
that a l1− penalization on f is introduced. Since f is a linear function, the penalization holds on
the coefficients of f . Lasso regression provides sparse fitted coefficients and more robust results
in a high dimensional setup. For more information, one can refer to chapter 18.4 of [HTF01].

Hyperparameters : Amount of penalization λ.

2.1.3 Classification and Regression Trees (CART)

CART is a tree method that consists in recursively partitioning the space of explanatory
variables and then proposing a simple predictor (majority vote for classification, mean for re-
gression) on each part of the space.

Splits are obtained in a binary and recursive way. They are computed by optimizing homogeneity
criteria. A drawback of CART methods is the instability of the fitted trees.

2.1.4 Random forests

[Bre04] proposed to overcome the instability of CART trees by using aggregation methods
called bagging. The idea is to train the CART trees, not only on a single sample but on B samples
drawn with replacement in the training sample (this is a bootstrap sample).

Training samples will be drawn independently and all individuals will have the same probability
of being drawn. The random forest algorithm adds a second source of randomness between the
different trees by allowing to choose the optimal separation only among a limited number of
variables drawn uniformly without replacement. In other words, at each training step of each
tree, mtry variables are drawn uniformly with replacement and the optimal separations are chosen
from these sets

2.1.5 k-nearest neighbors (k-nn)

The k-nearest neighbors algorithm consists in using the observations closest to a given point
to make a prediction. Once the space of variables x is endowed with a metric, it is possible to
determine the k nearest neighbors of a point by computing all the distances between the new
point and the points from the training sample. Once the neighbors identified, the prediction will
be given by averaging for regression or majority voting for classification the y values observed
on the nearest neighbors. For more information, one can refer to chapter 13.3 of [HTF01].
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2.1.6 Bayesian additive regression tree (BART)

BART is an additive tree model based on the Bayesian framework proposed by [CGM10].
For simplicity, BART will be introduced in the regression problem.

This method assumes that :
— the variable of interest can be expressed as a sum of trees and Gaussian noise : yk =

B∑
j=1

gj(xk,Mj , Tj) + εk where εk ∼ N(0, σ2) and B is the number of trees computed.

— there is a prior on trees distribution (defined as a structure T and predicted values per
end nodes M) used and on the variance of the Gaussian noise (T1,M1, . . . , TB,MB, σ).

— the prior on trees distribution and the one on the noise variance are independent.
— the priors (Ti,Mi) are mutually independent.

The prior on the tree structure is described by imposing a probability distribution on the depth
of the trees, the variables and the thresholds used for the splitting. The variance is assumed to
be distributed according to an inverse Gamma distribution whose hyperparameters are fixed by
the user.

The final predictions are obtained by drawing samples from the the a posteriori distribution using
MCMC algorithms and then sum it. For more information and a generalization for classification
problem, one can refer to [CGM10].

Hyperparameters : Hyperparameters from the prior, burn-in time for the MCMC method, the
number of trees.

2.1.7 Extrem Gradient Boosting (XGBoost)

Extrem Gradient Boosting algorithm is an algorithm proposed by Chen [CG16] for classifi-
cation, regression and ranking based on Gradient Boosting methods. The idea is to aggregate
several poorly performing models (weak learners) to build a better model. These weak learners
are generally decision trees with a small depth. Unlike bagging (used in the random forest algo-
rithm), weak learners are aggregated in a sequential way : at each step, a new tree is added to
improve the predictions where the old predictor has bad results.

XGBoost differs from other boosting methods by using a second-order Taylor approximation of
the loss function to improve the computation cost.

Penalization terms for the complexity of the trees (number and values taken by the leaves) are
used to reduce overfitting. Other methods allow to limit this over-fitting. For more information,
one can refer to [CG16].

Hyperparameters : number of trees, amount of penalization and learning rate.

2.1.8 Support vector machine (SVM)

SVM is a parametric model based on a geometric intuition that explains a binary variable as
a function of explanatory variables. Linear SVM can be seen as an empirical risk minimization
problem with the loss ψhinge : ψhinge(f(x),y) = max(1− yf(x)) where f is a linear function of
x. A l2-norm regularization can be added to prevent overfitting.

In order to get a more flexible model, SVM can be used with a kernel trick. Let k a positive
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define kernel and H the reproducing Hilbert kernel space associated to k. The k-kernel SVM
is the solution of the empirical risk minimization ψhinge : ψhinge(f(x),y) = max(1 − y, f(x))
but f belongs to H. We can add a regularization using the norm associated to H. Thanks to
the representer theorem, this problem can be solve considering f belongs to a finite-dimensional
subspace of H. For more information about the geometric interpretation, one can refer to chapter
12 of [HTF01].

Hyperparameters : kernel, amount of penalization.

2.1.9 Cubist

Cubist is an algorithm proposed in [Qui92] [Qui93]. It can be seen as a variant of CART
algorithm. Indeed, CART algorithm predicts in each terminal node using average of the variable y
(for regression problem) of the training sample belonging to this node. This approach corresponds
to performing a regression in each terminal node with a constant as the only explanatory variable.
According to the author, this can lead to underfiting. He thus proposes to learn in each terminal
node a linear model whose explanatory variables are the variables that intervened to construct
the node. Cubist provides an aggregation method close to boosting to get better results.

Hyperparameters : number of trees used in the boosting-like method.

2.1.10 MOB

MOB is an algorithm proposed in [ZHH08]. Intuitively, the author starts from the observation
that it is unlikely that a parametric model is valid over the whole range of the variable y : he
thus proposes to learn the model on different parts of the covariates space.

For this algorithm, the covariates are decomposed into two subsets :
— stratification variables : these variables will split the space of explanatory variables.
— truly explanatory variables : these variables will be used to create models in each set of

the partition created by the stratification variables.

The idea is to sequentially partition the space of explanatory variables in a recursive and binary
way based on the stratification variables A part of the space will be split if the model becomes
more stable if it is trained on each of the sub-parts separately. The instability is calculated using
a statistic whose asymptotic distribution is known. For more information about MOB, one can
refer to [ZHH08].

2.2 Score method
It is possible that the method used to estimate the response probabilities is not appropriate

and leads to wrong estimates. Beaumont and Haziza [HB07] have proposed a method to pro-
vide new response probabilities using estimation from another method (for instance, by logistic
regression). This method ensures more robustness to model misspecification.

The score method consists in :
— using a set of estimated response probabilities (p̂k)k∈S.
— creating classes using these response probabilities by :

— splitting into K groups. Each group contains an equal number of probabilities.
— or using k-means algorithm.

— estimating the response probability by the proportion of respondents per class.
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The inefficiency of the PSA and Hájek estimators may be due to highly spread weights : the
score method permits to reduce the discrepancy in the probabilities but may lead to bias.

2.3 Aggregation methods
There are no statistical models that are uniformly better than all other models in estimating

response probabilities. In practice, the statistician may use different methods to obtain different
sets of estimated probabilities. For example, logistic regression, random forests and BART can
be used : each individual will thus have three different estimations of response probabilities. For
each individual, we note pi = (p1i , . . . , p

m
i ) with m stands for the number of models used.

Rather than using each of these estimations separately, it would be more interesting to combine
them in order to get a new estimation. Ensemble methods provide efficiency gain and these
methods are less sensitive to misspecification.

We propose here three methods to combine several probability estimates : one based on calibra-
tion, another on a linear regression where estimated coefficients are slightly modified and the
last one combines these two approaches.

2.3.1 Calibration

Consider a sample S drawn according to a survey design P on a population U whose weighting
is given by (dk)k∈S. Suppose that for each individual in the sample, we have m estimations of
the response probabilities based on different methods pi = (p1i , . . . , p

m
i ). It is possible to consider

p as an auxiliary variable and thus use margin calibration to obtain non response corrected
weights. A constraint on the estimated size is also added.

The calibration problem can be expressed as follows :

min
{wk}

∑
k∈S

G(wk, dk)

qk
s.c

∑
k∈Sr

wkpk =
∑
k∈S

dkpk et
∑
k∈Sr

wk =
∑
k∈S

dk = N︸ ︷︷ ︸
because sampling design of fixed size in our setting.

(5)
The resulting estimation from this method would be t̂calibration

y =
∑
k∈Sr

wkyk.

2.3.2 COMPRESS

As in subsection 2.3.1, we consider a sample S drawn according to a design P on a population
U. The idea is to find a simple way to summarize all the information from the vector pi =
(p1i , . . . , p

m
i ). The method we propose is to perform the linear regression (without the constant)

of the response indicator variable Ri on pi :

Ri = β1p1i + . . .+ βmpmi + εi (6)

.
Let β̂ = (β̂1, . . . , β̂m) be the ordinary least squares estimation of the regression given in 6.

We define β̃ := (β̃1, . . . , β̃m) = 1
<β̂,β̂>

((β̂1)2, . . . , (β̂m)2). where < ., . > denotes the canonical
inner product of Rm.
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Therefore, β̃ ∈ [0; 1]m and
m∑
i=1

β̃i = 1. These two properties ensure that for any vector

of estimated probabilities pi then < β̃,pi > ∈ [0; 1] (as a convex combination of estimated
probabilities).

The aggregate value of the probability vector pcompress
i is thus given by pcompress

i =< β̃,pi >

and the resulting estimation from this method would be t̂compress
y =

∑
k∈Sr

yk
pcompress
k πk

.

2.3.3 COMPRESS and calibration

We can combine the two methods presented above to get a third way to mix several set of
response probabilities. We will consider the same setup with pi denotes the fitted probabilities for
unit i using m different algorithms. As in subsection 2.3.2, we can compute a compressed version
pcompress
i for each unit i. There is no reason for this new set pcompress to be already calibrated.

At this point, we can use calibration. Unlike in subsection 2.3.1, we will use other calibration
constraints :

min
{wk}

∑
k∈S

G(wk, dk)

qk
s.c

∑
k∈Sr

wk log(p
compress
k ) =

∑
k∈S

dk log(p
compress
k ) and

∑
k∈Sr

wk =
∑
k∈S

dk = N

(7)

3 Simulation study
This section aims to present how the simulations are done and how the estimators will be

compared using these simulations.

3.1 Simulation protocol
In order to estimate the bias and the mean squared error (MSE) of the PSA and Hájek

estimators, 1000 iterations will be performed. The estimation will be provided using the classical
Monte-Carlo method.

To simulate a population U consisting of N individuals and a sample S ⊂ U of n individuals,
we need to :

1. simulate a stratification variable X(s) for each unit k of U and create stratum based on
the empirical quantiles from the realization of the stratification variable (x

(s)
1 , . . . , x

(s)
N ).

In our work, we chose X(s) ∼ γ(3, 2).

2. Simulate, for each unit k in the population U, auxiliary variables :
— continuous variables :

(X(c1), X(c2), X(c3)) ∼ N(0, 1) ⊗ γ(3, 2) ⊗ γ(3, 2) (8)

— discrete variables :

(X(d1), X(d2), X(d3)) ∼ M(p) ⊗ B(0.5)⊗ U{1;...;5} (9)

where p = (p1, p2, p3, p4, p5) = (0.5, 0.05, 0.05, 0.1, 0.3)

3. compute the Neyman’s allocation for each stratum using the continuous variable X(c1)

and then draw a sample using a simple random sampling without replacement as survey
design based on the allocation.
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4. simulate a survey variable Y using a model Y = f(X(c1), . . . , X(c3), X(d1), . . . , X(d3), X(s))+
ε, où ε ∼ N(0, σ2ε). The variance of the error term is used to ajust the correlation between
y and x.

5. simulate response probabilities using all auxiliary variables by the following processes (see
figure 1) :

(a) p
(1)
i = logit−1(β0 + β

(s)
1 X

(s)
1 + β

(s)
2 X

(s)
2 + β

(s)
3 X

(s)
3 + β

(c)
1 X

(c)
1 + β2X

(c)
2 + β3X

(c)
3

+
∑5

k=2 β
(d)
1,k1{X(c)

1 =k} + β
(d)
2 X

(d)
2 +

∑5
k=2 β

(d)
3,k1{X(d)

3 =k}).

where pi = EPQ (Ri | S,X)

(b) p
(2)
i = 0.1 + 0.9p

(1)
i .

(c) p
(3)
i = 0.1 + 0.9 logit−1

(
−1 + sgn (Xc

1) (X
c
1)

2 + 3× 1{
X

(d)
1 <4

}
∩
{
X

(d)
2 =1

}).

(d) p
(4)
i = 0.55 + 0.45 tanh (0.05yi − 0.5).

(e) p
(5)
i = 0.1 + 0.9 logit−1 (0.2yi − 1.2).

In the following, we will denote these processes by non-response mechanisms.

6. the sample of respondents is generated using these probabilities (for each individual, a
draw is made according to a Bernouilli distribution whose parameter is the probability
of non-response). Thus, we obtain as many sets of response indicators R(k)

i as there are
non response mechanisms.

7. for each non response mechanism and for each algorithm, the response probabilities are
estimated and then the PSA and Hájek estimators are computed.
Hence we obtain as many simulations as there are couples of non-response mechanism
and machine learning algorithm (for the PSA and Hájek estimator).

Remarks :
— since the allocation is performed according to the variable X(c2) independent of y, this

variable does not impact the construction of y. As a result, very low empirical Pearson
correlation coefficients between y and 1

π are observed. This case corresponds to an non-
informative survey design : the survey design does not contain any information on the
variable y.

— auxiliary variables are drawn independently. This configuration can seem unrealistic. We
propose a scenario in which the variables from the step (2) have the same marginal law
but different joined distribution using Gaussian copula.

— (p
(4)
i ) and (p

(5)
i ) are NMAR mechanisms : we can use these mechanisms to test the limit

of each estimator.
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Figure 1 – Distribution of response probabilities on the population U

3.2 Monte-Carlo estimation of bias and relative mean squared
error

For the purpose of quantifying the performance of each method, we will use two statistics :
the relative Monte-Carlo bias and the relative Monte-Carlo mean squared error.

Assume that B simulations have been done. For each couple machine learning algorithm / non
response (for instance, (BART, p(4)i ) mechanism, there are B estimations from the PSA estimator
and from the Hájek estimator.

Let us denote by t̂y,k the total of y on U estimated (by using the PSA or Hájek estimator) at
the kth simulation and ty,k the real total of y on U (this quantity is known because we simulate
y before drawing the sample).

The relative Monte-Carlo bias is defined by :

BMC(t̂y) =
100

B

B∑
k=1

t̂y,k − ty,k
ty,k

(10)

The mean squared error is defined by :

MSEMC(t̂y) =
1

B

B∑
k=1

(
t̂y,k − ty,k

)2 (11)

However the mean squared error may be hard to interpret. Instead, we will introduce the
relative Monte-Carlo efficiency of a estimator t̂y (PSA or Hájek) as

EffMC(t̂y) = 100
MSEMC(t̂y)

MSEMC(t̂y,π)
(12)

where MSEMC(t̂y,π) is the mean squared error of the Narain-Horvitz-Thompson estimator. t̂y,π =∑
k∈S

yk
πk

. This statistic allows us to know if an estimator is more efficient than the Narain-Horvitz-

Thompsion estimation obtained if the true response probabilities were known.
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3.3 Alternative simulation scenario
So far, some assumptions was made in order to make the simulations : auxiliary variables are

generated independently (as shown in equation 8 and 9), the design survey is non-informative
and the survey function is a linear function of the auxiliary variables.

We decided to introduce several alternative scenarios, in which one or more assumptions change,
in order to compare each estimator in more realistic setup. These scenarios are obtained using :

— a more important weight on the variable used for the allocation (which is here X(c1) in
the function that links the survey variable Y and the auxiliary variables X. For instance,
if the function between Y and X is linear then we will increase (in absolute value) of
the coefficient related to X(c1). We control how the plan is informative by computing the
empirical correlation between the survey variable {yi}i∈U and the weight of the survey
sampling without non-response. { 1

πi
}i∈U

— another function for Y. For instance, we can use functions that involves interactions
between auxiliary variables.

— gaussian copulas that keep the same marginal distribution but introduce correlation bet-
ween variables. We used Gaussian copulas because we can easily express the correlation
between variables in term of the parameters of these copulas. We control how variables
are correlated using the empirical correlation matrix.

Figure 2 – Alternative simulation scenario

3.4 Results
3.4.1 Comparison of machine learning methods

In this section, the efficiency of the PSA estimator and the Hájek estimator will be studied.
For each algorithm of machine learning, an estimate of the efficiency of the estimators is available
for 42 configurations (6 non-response mechanisms and 7 general scenarios).

These tables shows us different results :
— algorithms such as cb3, svm2 and mob that provide the worst result in the worst case

(Max column) also provide worst results in other cases. It seems that using Cubist with
extrapolation and bias estimations provides very poor results.

— results obtained using svm2 are extremely bad : perhaps the polynomial kernel is too
restrictive.
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Algorithm Min Q1 Med Q3 Max Mean
knn 16 25 13 6 15 16

knn_reg 10 15 15 9 18 19
bart 3 2 12 3 12 5

bart_reg 9 3 24 26 32 32
cart1 17 14 9 16 6 7
cart2 19 12 6 17 7 8
cart3 18 13 5 19 9 9
cart4 11 16 11 14 3 3

CART_reg 15 20 8 13 8 4
cb1 23 22 23 22 21 21
cb2 20 11 25 28 26 27
cb3 32 32 31 32 32 32
cb4 24 17 17 20 23 20
cb5 25 19 18 25 24 24
logit 2 5 28 29 32 28

logit_lasso 7 27 26 21 22 26
mob 1 30 30 30 32 32
rf1 30 29 29 24 13 23
rf2 26 23 20 18 10 13
rf3 22 18 22 15 4 14
rf4 21 9 16 11 5 12
rf5 27 21 21 27 27 25

rf_reg 29 28 27 23 25 22
svm1 4 24 14 1 19 17
svm2 31 31 32 32 32 32
xgb1 14 8 1 10 20 18
xgb2 13 6 10 8 14 11
xgb3 8 10 4 7 16 10
xgb4 12 7 3 12 17 15

calibration 28 26 19 4 1 2
COMPRESS 5 1 7 5 11 6

COMPRESS +
calibration 6 4 2 2 2 1

Algorithm Min Q1 Med Q3 Max Mean
knn 29 26 18 25 18 23

knn_reg 27 24 21 26 21 25
bart 15 5 4 9 15 13

bart_reg 21 12 29 30 32 32
cart1 22 23 14 21 6 14
cart2 24 21 15 22 8 15
cart3 23 22 16 23 11 16
cart4 5 20 11 8 3 3

CART_reg 16 25 8 18 9 8
cb1 25 19 12 5 25 21
cb2 3 10 13 4 19 7
cb3 31 32 31 31 30 30
cb4 18 17 9 6 22 19
cb5 17 18 10 7 24 20
logit 2 13 27 24 29 27

logit_lasso 28 28 28 28 27 28
mob 1 31 32 32 32 32
rf1 8 15 26 17 4 9
rf2 11 6 20 13 7 6
rf3 14 3 22 15 10 10
rf4 12 1 17 16 12 11
rf5 10 7 23 3 13 4

rf_reg 9 11 25 10 5 5
svm1 26 27 24 27 23 26
svm2 32 30 30 29 28 29
xgb1 20 16 1 20 26 24
xgb2 7 8 6 14 17 18
xgb3 6 4 5 12 16 17
xgb4 19 14 3 19 20 22

calibration 30 29 19 2 1 2
COMPRESS 13 2 2 11 14 12

COMPRESS +
calibration 4 9 7 1 2 1

Table 1 – Rank efficiency of PSA estimator (left) and Hájek estimator (right).
The case (cb3, Min) = 32 means that cb3 has the 32th better minimum efficiency.
The minimum efficiency for an algorithm is the minimum MSE we get among all the
simulations done with this algorithm. We define in the same way the first quartile efficiency
(Q1), the median efficiency (Med), the third quartile efficiency (Q3), the max efficiency
(Max) and the mean efficiency (Mean).

— unlike Bart for classification, Bart for regression provide poor results in the worst cases.
— using PSA estimators :

— algorithms based on XGboost provide best results if we consider the median case for
each algorithm.

— aggregation methods (calibration, COMPRESS and COMPRESS + calibration) pre-
sented in section 2.3 perform well in the worst case. We can notice that Bart gives
good results in almost every configuration.

— using Hájek estimators :
— calibration based estimator perform better in the worst cases.
— calibration has bad results on the more friendly case.

3.4.2 Comparison between raw estimators and score methods

The score method allows to be more robust against misspecification problems. It can allow
efficiency gains. But is this the case for all learning methods used for modeling response proba-
bilities ? In this section, we are interested in the gain of the 10-class score method after using a
learning method to estimate the response probabilities. The gain for keeping the raw version of
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Algorithm Min Q1 Med Q3 Max Mean
knn 172 282 392 921 11 513 1 621

knn_reg 144 261 413 1 020 12 398 1 745
bart 129 199 384 852 10 595 1 314

bart_reg 143 208 571 2 479 Inf Inf
cart1 172 259 351 1 448 9 373 1 370
cart2 175 256 348 1 464 9 472 1 376
cart3 175 259 345 1 506 9 627 1 393
cart4 145 262 369 1 382 8 881 1 231

CART_reg 162 269 350 1 367 9 522 1 293
cb1 194 270 524 1 814 14 125 2 002
cb2 181 241 598 3 239 23 578 3 385
cb3 304 53 745 890 538 Inf Inf Inf
cb4 197 263 456 1 592 16 376 1 948
cb5 199 267 466 2 406 17 395 2 249
logit 123 215 962 5 786 Inf 84 503

logit_lasso 141 331 636 1 739 15 895 2 520
mob 121 833 10 846 106 423 Inf Inf
rf1 228 345 1 147 2 152 10 973 2 208
rf2 199 278 487 1 470 9 717 1 482
rf3 192 264 522 1 419 9 215 1 488
rf4 188 235 417 1 133 9 341 1 413
rf5 200 269 508 2 847 25 181 2 408

rf_reg 225 343 821 1 989 19 596 2 203
svm1 129 280 407 780 12 482 1 639
svm2 297 32 212 Inf Inf Inf Inf
xgb1 155 225 324 1 124 12 551 1 677
xgb2 148 215 368 1 016 11 479 1 405
xgb3 143 239 344 928 11 581 1 394
xgb4 148 221 330 1 139 12 111 1 589

calibration 222 318 472 875 7 475 1 031
COMPRESS 137 199 348 906 10 382 1 317

COMPRESS_CAL 139 208 328 798 7 772 908

Algorithm Min Q1 Med Q3 Max Mean
knn 198 253 449 2 219 10 875 1 826

knn_reg 187 251 485 2 352 11 932 1 998
bart 159 202 306 1 417 10 201 1 457

bart_reg 173 217 1 401 5 545 Inf Inf
cart1 173 248 421 1 807 9 369 1 485
cart2 174 240 422 1 807 9 472 1 487
cart3 174 243 430 1 844 9 627 1 510
cart4 145 229 362 1 413 8 879 1 255

CART_reg 163 252 344 1 733 9 515 1 382
cb1 182 228 363 1 365 12 281 1 680
cb2 138 211 419 1 291 10 922 1 367
cb3 223 1 605 3 246 8 241 60 590 7 404
cb4 165 224 345 1 389 12 223 1 675
cb5 163 224 346 1 398 12 255 1 680
logit 123 218 671 2 202 27 493 2 770

logit_lasso 193 305 679 2 759 15 670 2 833
mob 122 976 8 259 374 131 Inf Inf
rf1 150 219 572 1 598 9 149 1 382
rf2 156 202 477 1 512 9 397 1 348
rf3 159 198 489 1 529 9 607 1 401
rf4 156 195 437 1 555 9 721 1 406
rf5 153 202 493 1 275 9 890 1 327

rf_reg 151 212 547 1 458 9 159 1 345
svm1 187 279 516 2 691 12 231 2 069
svm2 237 452 1 491 3 723 23 959 3 966
xgb1 171 220 295 1 751 12 305 1 864
xgb2 148 206 315 1 520 10 817 1 567
xgb3 147 201 307 1 508 10 815 1 560
xgb4 170 219 296 1 741 11 783 1 778

calibration 222 318 472 875 7 475 1 031
COMPRESS 158 196 296 1 470 10 144 1 443

COMPRESS_CAL 139 208 328 798 7 772 908

Table 2 – Relative Monte-Carlo efficiency for PSA estimator (left) and Hájek estimator
(right).
The case (xgb4,Med) = 397 means that the median of all the relative Monte-Carlo
efficiencies (as defined in equation 12) using xgb4 as algorithm.

an estimator t̂y (PSA or Hájek for instance) is quantified by G =
EffMC t̂y,score

EffMC t̂y
. Figure 3 allows

us to observe whether the gain is greater than 1 (so the 10-class score method deteriorates - in
blue on the graph) for each pair of method and non response mechanism.
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Figure 3 – Gain (in term of efficiency) between raw estimators and score method esti-
mators.

Several results emerge from this graph :
— the results with and without the score method provide the same results when the res-

ponse probabilities are estimated by the CART method. It is possible that there is no
efficiency gain because the probabilities estimated by the CART methods belong to a
finite support with a small cardinal and therefore the score method does not allow to
decrease significantly the size of the support of the estimated probabilities.

— similar results are found for the k-nearest neighbors. Indeed, the cardinal of the support
of the estimated probabilities is at most k + 1.

— the method of scores damage the efficiency of Hájek estimators for random forests mostly.
— the method of scores decreases the efficiency of PSA estimators when the probabilities

are estimated with the XGBoost algorithm.
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— overall, the score method increases the efficiency of the estimators when the estimates of
the response probabilities are very bad such as the SVM method with linear kernel or
the logistic regression when the true response probabilities are between 0.1 and 1.

3.4.3 Comparaison between PSA and Hájek estimator

We decided to compute for each simulation the estimates based on PSA and Hayek estimators.
Are there methods for which one of the estimators is better than the other ?

In order to answer this question empirically, simulations were performed. The following figure
4 allows us to compute the ratio between the mean square error of Hayek’s estimator and that
of the PSA estimator. When this indicator is smaller than 1 (red on the figure) then the Hayek
estimator is better than the PSA estimator. Symmetrically, if this indicator is greater than 1
(blue on the figure) then the PSA estimator is better.

First, we observe that the performances are the same for both estimators as soon as we use a
method based on calibration (calibration or COMPRESS and calibration) : this is due to the
fact that these estimators are calibrated on several auxiliary variables including the total size of
the population and thus the two estimators are similar.

The PSA estimator seems to provide better results when the probabilities are estimated using the
BART or MOB methods. The Hayek estimator appears to produce better estimators when the
methods produce very poor estimates of the response probabilities (cb3 or svm2). With several
nonresponse mechanisms, the performance of both estimators seems to be the same when the
probabilities are estimated by the CART method.

Figure 4 – Gain (in term of efficiency) between Hayek and PSA estimators.

3.4.4 COMPRESS and calibration methods : the more we add probability
estimations the better is the resulting estimator ?

As mentioned in section 2.3, it is possible to aggregate m sets of estimated probabilities
to create new ones (using the COMPRESS method, based on calibration or COMPRESS +
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calibration). Empirically, we have found that these estimators provide more efficient estimators
when considering the least favorable situations. However, do these estimators keep these good
properties when the number of estimated probability sets m increases ?

In order to verify this hypothesis empirically, simulations were performed. We kept the same
setup that was described in section 3.1. From 6 learning methods (logistic regression with the
10-class score method, rf4, bart, cb1, xgb3, svm1), the probabilities of answers will be estimated.
Then each aggregation method will be used based on all the combination of one method (m =
1), then two (m = 2 - there are

(
6
2

)
possibilities) and up to 6 methods. This gives 63 different

estimates for each aggregation method. These estimations will be repeated 1000 times in order
to have an estimate of the biases and relative efficiencies.

In the figure 5, we have displayed, for each aggregated method, the relative efficiency of the PSA
estimator (We provided same results on the bias in the annex (figure 7, 6 and 8) as a function
of the number of methods m used. This figure consists of three curves :

— Min curve describes, for a number of sets of probabilities used m, the minimum of the
relative efficiencies obtained among the possible

(
6
m

)
relative efficiencies.

— Med curve describes, for a number of sets of probabilities used m, the median of the
relative efficiencies obtained among the possible

(
6
m

)
relative efficiencies.

— Max curve describes, for a number of sets of probabilities used m, the maximum of the
relative efficiencies obtained among the possible

(
6
m

)
relative efficiencies.
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Figure 5 – Efficiency of aggregation methods and number of methods aggregated

When the number of probability sets increases with the COMPRESS estimator, the median
of the mean square errors for a number of probability sets m decreases with m except in the
case pi5 which corresponds to a NMAR process. The maximum of the mean square errors also
decreases. Nevertheless, the minimum of the mean square errors seems to increase but with a
smaller amplitude than the decrease of the maximum of the mean square errors : the increase
of the number of sets used seems to improve more significantly the performances in the less
favorable situations than it deteriorates it in the most favorable cases.

However, different results are observed for the calibration-based estimator. The minimum and
the median of the squared errors seem to increase with the number of probability sets used. This
result could be due to the instability of the calibration-based estimator when the number of
variables used increases ([SS97]). Moreover, contrary to the estimator based on the COMPRESS
methods, the maximum of the mean square errors only decreases after a certain rank.

Finally, when the COMPRESS and calibration methods are combined, the median of the squared
errors seems to increase at first before decreasing, contrary to the estimator based only on the
calibration. Moreover, the maximum of the mean squared errors decreases with the number of
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probability sets used m.
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4 Annexes

4.1 Algorithm used

Label Algorithm Continuous or discrete variable Hyperparameters
bart BART Discrete

bart_reg BART Continue
CART_reg CART Continuous Min number of observations in each leaf : 20

cart1 CART pruned Discrete Min number of observations in each leaf : 10
cart2 CART pruned Discrete Min number of observations in each leaf : 20
cart3 CART pruned Discrete Min number of observations in each leaf : 30
cart4 CART non pruned Discrete Min number of observations in each leaf : 20

cb1 Cubist Continuous
Not biased

10 agregated models
With extrapolation

cb2 Cubist Continuous
Biased

10 agregated models
Without extrapolation

cb3 Cubist Continuous
Biased

10 agregated models
With extrapolation

knn k-nearest neighbours Discrete
knn_reg k-nearest neighbours Discrete

logit Logistic regression Discrete
logit_lasso Lasso logistic regression Discreate Lambda : obtained using 10-fold cross-validation

mob Model-Based Recursive Partitioning Discrete Variable used for the stratification : X(x)

rf_reg Random forests Continue Min number of observations in each leaf : 20
Nombre d’arbres aggregés : 200

rf1 Random forests Discrete (Probabilities estimation trees) Min number of observations in each leaf : 10
Number of trees : 100

rf2 Random forests Discrete (Probabilities estimation trees) Min number of observations in each leaf : 10
Number of trees : 500

rf3 Random forests Discrete (Probabilities estimation trees) Min number of observations in each leaf : 30
Number of trees : 100

rf4 Random forests Discrete (Probabilities estimation trees) Min number of observations in each leaf : 30
Number of trees : 500

rf5 Random forests Discrete (Probabilities estimation trees) Min number of observations in each leaf : 30
Number of trees : 5E00

svm1 SVM with RBF kernel
Platt method to get probabilities Discrete Gamma : 0.025

nu : 0.7

svm2 SVM with polynomial kernel Discreate
Gamma : 0.0001

nu = 0.7
Degré = 1

xgb1 XGBoost Continue

Number of trees : 500
Gamma : 10

Proportion for subset : 75%
Learning rate : 0.05

Max deepth : 2

xgb2 XGBoost Continue

Number of trees : 2000
Gamma : 2

Proportion for subset : 100%
Learning rate : 0.5

Max deepth : 2

xgb3 XGBoost Continue

Number of trees : 1000
Gamma : 1

Proportion for subset : 75%
Learning rate : 0.01

Max deepth : 1

xgb4 XGBoost Continue

Number of trees : 500
Gamma : 10

Proportion for subset : 75%
Learning rate : 0.05

Max deepth : 3

Table 3 – Labels and hyperparameters for each algorithm
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4.2 Efficiency of aggregation methods and number of methods
aggregated
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