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Outline
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Set-up
U = {u1, u2, ..., uN} : finite population of size N.

Y : survey variable.

Goal: Estimate
ty :=

∑
k∈U

yk ,

with yk the measurement of Y for element k of U.

S: probability sample with, for k, l ∈ U,

πk := P (k ∈ S) > 0, and πkl := P (k, l ∈ S) > 0.

If Y is fully observed (no nonresponse), we have access to

Dy := {yk ; k ∈ S}.

Horvitz-Thompson estimator t̂ht of ty :

t̂ht :=
∑
k∈S

yk
πk

=
∑
k∈S

dkyk .
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Model-assisted estimation

X1,X2, ...,Xp: auxiliary information.

If, for all k ∈ U, the vectors xk := [xk1, ..., xkp]> are observed,
we have access to

Dma = {(xk , yk) ; k ∈ S}
⋃
{xk ; k ∈ U\S}.

Model-assisted estimator t̂ma of ty :

t̂ma :=
∑
k∈U

m̂1(xk) +
∑
k∈S

yk − m̂1(xk)
πk

, (1)

with m̂1 : Rp → R, a prediction method which may depend on
Dma.

The estimator t̂ma might improve on t̂ht .
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Nonresponse

In most surveys, the variable Y is prone to nonresponse.

Let rk be the response indicator for Y , i.e.

rk =
{
1, if yk is observed,
0, if yk is missing.

and define Sr = {k ∈ S; rk = 1}, Sm = {k ∈ S; rk = 0}.

We thus have access to

Dimp = {(xk , yk) ; k ∈ Sr}
⋃
{xk ; k ∈ Sm}.

Nonresponse mechanism is assumed to be missing at
random (Rubin, 1976):

P {rk = 1|yk , xk} = P {rk = 1|xk} .
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Imputation

Imputed estimator of ty :

t̂imp =
∑
k∈Sr

yk
πk

+
∑

k∈Sm

m̂2(xk)
πk

,

with m̂2 : Rp → R, a prediction method which may depend on
Dimp.

The estimator t̂imp might reduce the undesirable effects of
nonresponse.

It is possible to write t̂imp as

t̂imp =
∑
k∈S

m̂2(xk)
πk

+
∑
k∈Sr

yk − m̂2(xk)
πk

.

Many properties of t̂ma will also be shared by t̂imp.
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Regression trees

Definition. (Regression trees)
A regression tree algorithm fitted on DU = {(xk , yk)}k∈U can be
defined as follows:

Step 1: Choose a splitting criterion and a stopping criterion (e.g.
a minimum of n0 elements per node).

Step 2: Split recursively [0; 1]p to obtain a partition
P̃ =

{
Ã1, ..., ÃT

}
of [0; 1]p.

Step 3: For a prediction at the point x, compute

m̃tree (x,DU) :=
∑
k∈U

1xk∈Ã(x)∑
l∈U 1xl∈Ã(x)

yk ,

with Ã(x) the node containing x.
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Example 1: Regression trees

Figure: A regression tree (left) and its corresponding partition (right).

↪→ The prediction at a point x ∈ Ãj is given by the average of the
{yk}k:xk∈Ãj

.
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Breiman’s random forests (Breiman, 2001)

Random forests are ensemble methods based on a large
collection of regression trees. These can be defined by the
following steps.

Step 1: Select B bootstrap samples (samples of N elements from DU ,
with replacement) DU (Θ1) , ...,DU (ΘB) from DU .

Step 2: On DU (Θb), fit m̃(b)
tree using the randomized CART criterion

optimized on p0 covariates chosen uniformly at random,
without replacement, at each split.

Step 3: The prediction at x ∈ [0; 1]p is given by

m̃rf (x) = 1
B

B∑
b=1

m̃(b)
tree (x) .
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Exemple 2: Estimation of a regression function

Figure: Regression function estimation with a tree and a forest, with
Y = m(X1) +N (0; 0.2), such that m : x 7→ 4 + 2x2, and X1 ∼ U [0; 1].
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Random forest model-assisted estimator

At the sample level, we define

m̂rf 1(x) : = 1
B

B∑
b=1

∑
k∈S(Θb)

π−1
k 1xk∈Âb(x)∑

l∈S(Θb) π
−1
l 1xl∈Âb(x)

yk .

Proposed random forest model-assisted estimator of ty :

t̂rf 1 :=
∑
k∈U

m̂rf 1 (xk) +
∑
k∈S

yk − m̂rf 1(xk)
πk

.

Taking the particular case of B = 1, and no random
mechanism, we obtain a regression tree model-assisted
estimator, as in Toth and McConville (2019).
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The random forest weighting system

We can write t̂rf 1 as

t̂rf 1 =
∑
k∈S

wk1yk ,

with

wk1 = 1
πk

{
1 + 1

B

B∑
b=1

ψ
(b)
k

Nb (xk ,U)− N̂b (xk , S)
N̂b(xk ,S(Θb))

}
, k ∈ S,

where:

ψ
(b)
k = 1 if k ∈ S(Θb), 0 otherwise,

Nb (xk ,U) denoting the number of elements of U belonging to
the node Âb(xk),

N̂b (xk ,S) denoting the Horvitz-Thompson estimator of the
number of elements of U with elements of S belonging to the
node Âb(xk).
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Behavior of the weighting system

Considering the case of a regression tree, we have

wk1 = dk ×
N (xk ,U)
N̂(xk ,S)

, k ∈ S.

It follows that:

If the original weighting system estimates correctly the
number of elements similar to uk , then wk1 ≈ dk .

If the original weighting system underestimates the number
of elements similar to uk , then wk1 >> dk .

If the original weighting system overestimates the number of
elements similar to uk , then wk1 << dk .

The weights satisfy
∑

k∈S wk1 = N, for all S ∈ S.
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Asymptotic properties and variance estimation

In the framework of Isaki and Fuller (1982), under mild conditions, the
following asymptotic properties hold.

There exists constants C1,C2 such that

Ep

[∣∣∣∣ 1N (
t̂rf 1 − ty

) ∣∣∣∣] 6 C1√
N

+ C2
n0
. a.s.

The asymptotic variance of t̂rf 1 is given by

AVp

(
t̂rf 1
N

)
= 1

N2

∑
k∈U

∑
`∈U

(πkl − πkπ`)yk − m̃rf (xk)
πk

y` − m̃rf (x`)
π`

.

It is possible to estimate this asymptotic variance consistently.

The estimator t̂rf 1 is asymptotically gaussian for common sampling
designs.
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Random forest imputed estimators
Let m̂rf 2 denote a random forest estimator (unweighted) fitted on
{(xk , yk) ; k ∈ Sr}, that is,

m̂rf 2(x) : = 1
B

B∑
b=1

∑
k∈Sr (Θb)

1xk ∈Âb(x)∑
l∈Sr (Θb) 1xl ∈Âb(x)

yk .

The forest imputed estimator t̂rf 2 is defined by

t̂rf 2 =
∑
k∈Sr

yk
πk

+
∑

k∈Sm

m̂rf 2(xk)
πk

.

The forest t̂rf 2 estimator can be written as

t̂rf 2 =
∑
k∈Sr

wk2yk ,

where the estimation weights {wk2}k∈Sr are given by

wk2 = 1
πk

+ 1
B

B∑
b=1

ψ
(b)
k

N̂b (xk ,Sm)
Nb (xk ,Sr (Θb)) ,
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Understanding the behavior of the weighting system

Consider the case of a regression tree. Then,

Assuming equality of first order inclusion probabilities, we have

wk2 = dk ×
(
1 + N (xk ,Sm)

N (xk , Sr )

)
= dk ×

{
1 + Rmr (xk)

}
.

It follows that:

If most people similar to uk did not answer, then Rmr (xk) is
large and wk2 is large.

If most people similar to uk did answer, then Rmr (xk) is close
to 0 and wk2 is close to dk , the original weight.
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Instability of small forest estimators
The weights of unselected elements are such that

wk2 = dk , k ∈
B⋂

b=1
Sr (Θb).

The weights are calibrated to the population size N whenever the
original weighting system is:∑

k∈Sr

wk2 =
∑
k∈S

dk := N̂.

Unselected elements have low weights, forcing selected
elements to have large weights.

For all k ∈ Sr and nr > 1

P

{
k ∈

B⋂
b=1

Sr (Θb)
∣∣∣∣nr

}
=
(

nr − 1
nr

)B
B→∞−−−−→ 0.

Hence, stability is recovered for large forests.
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Asymptotic properties and variance estimation

Forests with a large number of trees are more efficient
than forests with a small number of trees.

For large forests with Breiman’s algorithm, we have

lim
v→∞

E

[( 1
Nv

(
t̂rf 2 − ty

))2]
= 0.

The randomization variance is controlled by

VΘ

(
t̂rf 2
N

)
6

C
B .

↪→ For large forests, the randomization variance can be
neglected.

Variance estimators are suggested using both the two-phase
and reverse approaches.
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Some empirical considerations

Simulations show the good behavior of model-assisted and
imputed random forests estimators, particularly in
high-dimensional frameworks.

Most packages do not provide the option of weighting the
predictions.

↪→ We recommend adding design variables to the set of
covariates, while forcing these additional covariates to always
be considered.

Variance estimators are approximately unbiased for large
choices of n0; for small values of n0, however, the variance
might be under-estimated.

↪→ We recommend using a cross-validated variance estimator
for small choices of n0.
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Final remarks

Statistical learning prediction procedures provide highly flexible
tools for survey practitioners and can be used in many areas:

Model-assisted estimation,
Imputation,
Propensity score adjustment,
Model-based estimation,
Definition of the sampling design (e.g. adaptive sampling).

Most machine learning procedures are not yet fully
understood. Problems in surveys may arise:

Model-assisted variance underestimated by the usual variance
estimator for complex models.
Important bias in forest estimators when design design
variables are not considered for splitting.

There is an important need for additional research in this area.
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