Random forests in surveys: from model-assisted estimation to imputation

Mehdi $Dagdoug^{(a)}$ Joint work with $Camelia\ Goga^{(a)}$ and $David\ Haziza^{(b)}$

 (a) Université de Bourgogne Franche-Comté, LmB, Besançon, France
(b) University of Ottawa, Department of mathematics and statistics, Ottawa, Canada

> JMS2022 29-31 March 2022

Outline

- 1) Basic set-up and prediction models in surveys.
- 2) An introduction to regression trees and random forests.
- 3) Model-assisted estimation with random forests (JASA, 2021).
- 4) Imputation with random forests (to be submitted).
- 5) Conclusion and future works.

This research was supported by grants of the region of Franche-Comté and Médiamétrie.

Set-up

- $U = \{u_1, u_2, ..., u_N\}$: finite population of size N.
- Y: survey variable.
- Goal: Estimate

$$t_{y}:=\sum_{k\in U}y_{k},$$

with y_k the measurement of Y for element k of U.

• S: probability sample with, for $k, l \in U$,

$$\pi_k := \mathbb{P}(k \in S) > 0,$$
 and $\pi_{kl} := \mathbb{P}(k, l \in S) > 0.$

• If Y is fully observed (no nonresponse), we have access to

$$D_y:=\{y_k; k\in S\}.$$

• Horvitz-Thompson estimator \hat{t}_{ht} of t_y :

$$\widehat{t}_{ht} := \sum_{k \in S} \frac{y_k}{\pi_k} = \sum_{k \in S} d_k y_k.$$

Model-assisted estimation

- $X_1, X_2, ..., X_p$: auxiliary information.
- If, for all $k \in U$, the vectors $\mathbf{x}_k := [x_{k1}, ..., x_{kp}]^{\top}$ are observed, we have access to

$$D_{ma} = \{(\mathbf{x}_k, y_k); k \in S\} \bigcup \{\mathbf{x}_k; k \in U \setminus S\}.$$

• Model-assisted estimator \hat{t}_{ma} of t_{y} :

$$\widehat{t}_{ma} := \sum_{k \in U} \widehat{m}_1(\mathbf{x}_k) + \sum_{k \in S} \frac{y_k - \widehat{m}_1(\mathbf{x}_k)}{\pi_k}, \tag{1}$$

with $\widehat{m}_1:\mathbb{R}^p \to \mathbb{R}$, a prediction method which may depend on D_{ma} .

• The estimator \hat{t}_{ma} might improve on \hat{t}_{ht} .

Nonresponse

- In most surveys, the variable *Y* is prone to nonresponse.
- Let r_k be the response indicator for Y, i.e.

$$r_k = \begin{cases} 1, & \text{if } y_k \text{ is observed,} \\ 0, & \text{if } y_k \text{ is missing.} \end{cases}$$

and define
$$S_r = \{k \in S; r_k = 1\}, S_m = \{k \in S; r_k = 0\}.$$

We thus have access to

$$D_{imp} = \{(\mathbf{x}_k, y_k); k \in S_r\} \bigcup \{\mathbf{x}_k; k \in S_m\}.$$

 Nonresponse mechanism is assumed to be missing at random (Rubin, 1976):

$$\mathbb{P}\left\{r_k=1|y_k,\mathbf{x}_k\right\}=\mathbb{P}\left\{r_k=1|\mathbf{x}_k\right\}.$$

Imputation

• Imputed estimator of t_y :

$$\widehat{t}_{imp} = \sum_{k \in S_r} \frac{y_k}{\pi_k} + \sum_{k \in S_m} \frac{\widehat{m}_2(\mathbf{x}_k)}{\pi_k},$$

with $\widehat{m}_2:\mathbb{R}^p \to \mathbb{R}$, a prediction method which may depend on D_{imp} .

- The estimator \hat{t}_{imp} might reduce the undesirable effects of nonresponse.
- ullet It is possible to write \widehat{t}_{imp} as

$$\widehat{t}_{imp} = \sum_{k \in S} \frac{\widehat{m}_2(\mathbf{x}_k)}{\pi_k} + \sum_{k \in S_r} \frac{y_k - \widehat{m}_2(\mathbf{x}_k)}{\pi_k}.$$

• Many properties of \hat{t}_{ma} will also be shared by \hat{t}_{imp} .

Regression trees

Definition. (Regression trees)

A regression tree algorithm fitted on $D_U = \{(\mathbf{x}_k, y_k)\}_{k \in U}$ can be defined as follows:

- Step 1: Choose a splitting criterion and a stopping criterion (e.g. a minimum of n_0 elements per node).
- Step 2: Split recursively $[0;1]^{\rho}$ to obtain a partition $\widetilde{\mathcal{P}} = \left\{ \widetilde{\mathcal{A}}_1, ..., \widetilde{\mathcal{A}}_T \right\}$ of $[0;1]^{\rho}$.
- Step 3: For a prediction at the point \mathbf{x} , compute

$$\widetilde{m}_{tree}(\mathbf{x}, D_U) := \sum_{k \in U} \frac{\mathbb{1}_{\mathbf{x}_k \in \widetilde{\mathcal{A}}(\mathbf{x})}}{\sum_{l \in U} \mathbb{1}_{\mathbf{x}_l \in \widetilde{\mathcal{A}}(\mathbf{x})}} y_k,$$

with $\widetilde{\mathcal{A}}(\mathbf{x})$ the node containing \mathbf{x} .

Example 1: Regression trees

Figure: A regression tree (left) and its corresponding partition (right).

 \hookrightarrow The prediction at a point $\mathbf{x} \in \widetilde{A}_j$ is given by the **average** of the $\{y_k\}_{k:\mathbf{x}_k\in\widetilde{A}_i}$.

Breiman's random forests (Breiman, 2001)

Random forests are ensemble methods based on a large collection of regression trees. These can be defined by the following steps.

- Step 1: Select B bootstrap samples (samples of N elements from D_U , with replacement) $D_U(\Theta_1),...,D_U(\Theta_B)$ from D_U .
- Step 2: On $D_U(\Theta_b)$, fit $\widetilde{m}_{tree}^{(b)}$ using the randomized CART criterion optimized on p_0 covariates chosen **uniformly at random**, without replacement, at each split.
- Step 3: The prediction at $\mathbf{x} \in [0, 1]^p$ is given by

$$\widetilde{m}_{rf}(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^{B} \widetilde{m}_{tree}^{(b)}(\mathbf{x}).$$

Exemple 2: Estimation of a regression function

Figure: Regression function estimation with a tree and a forest, with $Y = m(X_1) + \mathcal{N}(0; 0.2)$, such that $m: x \mapsto 4 + 2x^2$, and $X_1 \sim \mathcal{U}[0; 1]$.

Random forest model-assisted estimator

• At the sample level, we define

$$\widehat{m}_{rf1}(\mathbf{x}) := \frac{1}{B} \sum_{b=1}^{B} \sum_{k \in S(\Theta_b)} \frac{\pi_k^{-1} \mathbb{1}_{\mathbf{x}_k \in \widehat{A}_b(\mathbf{x})}}{\sum_{l \in S(\Theta_b)} \pi_l^{-1} \mathbb{1}_{\mathbf{x}_l \in \widehat{A}_b(\mathbf{x})}} y_k.$$

• Proposed random forest model-assisted estimator of t_y :

$$\widehat{t}_{rf1} := \sum_{k \in U} \widehat{m}_{rf1}(\mathbf{x}_k) + \sum_{k \in S} \frac{y_k - \widehat{m}_{rf1}(\mathbf{x}_k)}{\pi_k}.$$

• Taking the particular case of B=1, and no random mechanism, we obtain a regression tree model-assisted estimator, as in Toth and McConville (2019).

The random forest weighting system

• We can write \hat{t}_{rf1} as

$$\widehat{t}_{rf1} = \sum_{k \in S} w_{k1} y_k,$$

with

$$w_{k1} = \frac{1}{\pi_k} \left\{ 1 + \frac{1}{B} \sum_{b=1}^{B} \psi_k^{(b)} \frac{N_b \left(\mathbf{x}_k, U \right) - \widehat{N}_b \left(\mathbf{x}_k, S \right)}{\widehat{N}_b \left(\mathbf{x}_k, S (\Theta_b) \right)} \right\}, \qquad k \in S,$$

where:

- $\psi_k^{(b)} = 1$ if $k \in S(\Theta_b)$, 0 otherwise,
- $N_b(\mathbf{x}_k, U)$ denoting the number of elements of U belonging to the node $\widehat{\mathcal{A}}_b(\mathbf{x}_k)$,
- $\widehat{N}_b(\mathbf{x}_k, S)$ denoting the Horvitz-Thompson estimator of the number of elements of U with elements of S belonging to the node $\widehat{\mathcal{A}}_b(\mathbf{x}_k)$.

Behavior of the weighting system

• Considering the case of a regression tree, we have

$$w_{k1} = d_k \times \frac{N(\mathbf{x}_k, U)}{\widehat{N}(\mathbf{x}_k, S)}, \qquad k \in S.$$

- It follows that:
 - If the original weighting system **estimates correctly** the number of elements similar to u_k , then $w_{k1} \approx d_k$.
 - If the original weighting system **underestimates** the number of elements similar to u_k , then $w_{k1} >> d_k$.
 - If the original weighting system **overestimates** the number of elements similar to u_k , then $w_{k1} << d_k$.
- The weights satisfy $\sum_{k \in S} w_{k1} = N$, for all $S \in S$.

Asymptotic properties and variance estimation

In the framework of Isaki and Fuller (1982), under mild conditions, the following asymptotic properties hold.

• There exists constants C_1 , C_2 such that

$$\mathbb{E}_{p}\left[\left|\frac{1}{N}\left(\widehat{t}_{rf1}-t_{y}\right)\right|\right]\leqslant\frac{C_{1}}{\sqrt{N}}+\frac{C_{2}}{n_{0}}.\quad\text{a.s.}$$

• The asymptotic variance of \hat{t}_{rf1} is given by

$$\mathbb{AV}_{p}\left(\frac{\widehat{t}_{rf1}}{N}\right) = \frac{1}{N^{2}} \sum_{k \in U} \sum_{\ell \in U} (\pi_{kl} - \pi_{k}\pi_{\ell}) \frac{y_{k} - \widetilde{m}_{rf}(\mathbf{x}_{k})}{\pi_{k}} \frac{y_{\ell} - \widetilde{m}_{rf}(\mathbf{x}_{\ell})}{\pi_{\ell}}.$$

- It is possible to estimate this asymptotic variance consistently.
- The estimator \hat{t}_{rf1} is asymptotically gaussian for common sampling designs.

Random forest imputed estimators

• Let \widehat{m}_{rf2} denote a random forest estimator (unweighted) fitted on $\{(\mathbf{x}_k, y_k); k \in S_r\}$, that is,

$$\widehat{m}_{rf2}(\mathbf{x}) := \frac{1}{B} \sum_{b=1}^{B} \sum_{k \in S_r(\Theta_b)} \frac{\mathbb{1}_{\mathbf{x}_k \in \widehat{A}_b(\mathbf{x})}}{\sum_{l \in S_r(\Theta_b)} \mathbb{1}_{\mathbf{x}_l \in \widehat{A}_b(\mathbf{x})}} y_k.$$

• The forest imputed estimator \hat{t}_{rf2} is defined by

$$\widehat{t}_{rf2} = \sum_{k \in S_r} \frac{y_k}{\pi_k} + \sum_{k \in S_m} \frac{\widehat{m}_{rf2}(\mathbf{x}_k)}{\pi_k}.$$

• The forest \hat{t}_{rf2} estimator can be written as

$$\widehat{t}_{rf2} = \sum_{k \in S} w_{k2} y_k,$$

where the estimation weights $\{w_{k2}\}_{k \in S_r}$ are given by

$$w_{k2} = \frac{1}{\pi_k} + \frac{1}{B} \sum_{b=1}^{B} \psi_k^{(b)} \frac{\widehat{N}_b(\mathbf{x}_k, S_m)}{N_b(\mathbf{x}_k, S_r(\Theta_b))},$$

Understanding the behavior of the weighting system

Consider the case of a regression tree. Then,

• Assuming equality of first order inclusion probabilities, we have

$$w_{k2} = d_k \times \left(1 + \frac{N(\mathbf{x}_k, S_m)}{N(\mathbf{x}_k, S_r)}\right) = d_k \times \left\{1 + R_{mr}(\mathbf{x}_k)\right\}.$$

- It follows that:
 - If most people similar to u_k did not answer, then $R_{mr}(\mathbf{x}_k)$ is large and w_{k2} is large.
 - If most people similar to u_k did answer, then $R_{mr}(\mathbf{x}_k)$ is close to 0 and w_{k2} is close to d_k , the original weight.

Instability of small forest estimators

The weights of unselected elements are such that

$$w_{k2} = d_k, \qquad k \in \bigcap_{b=1}^B S_r(\Theta_b).$$

 The weights are calibrated to the population size N whenever the original weighting system is:

$$\sum_{k\in S_r}w_{k2}=\sum_{k\in S}d_k:=\widehat{N}.$$

- Unselected elements have low weights, forcing selected elements to have large weights.
- For all $k \in S_r$ and $n_r \geqslant 1$

$$\mathbb{P}\left\{k\in\bigcap_{b=1}^B S_r(\Theta_b)\ \bigg|\ n_r\right\}=\left(\frac{n_r-1}{n_r}\right)^B\xrightarrow{B\to\infty}0.$$

Hence, stability is recovered for large forests.

Asymptotic properties and variance estimation

- Forests with a large number of trees are more efficient than forests with a small number of trees.
- For large forests with Breiman's algorithm, we have

$$\lim_{v\to\infty}\mathbb{E}\left[\left(\frac{1}{N_v}\left(\hat{t}_{rf2}-t_y\right)\right)^2\right]=0.$$

The randomization variance is controlled by

$$\mathbb{V}_{\Theta}\left(\frac{\widehat{t}_{rf2}}{N}\right) \leqslant \frac{C}{B}.$$

- \hookrightarrow For large forests, the randomization variance can be neglected.
- Variance estimators are suggested using both the two-phase and reverse approaches.

Some empirical considerations

- Simulations show the good behavior of model-assisted and imputed random forests estimators, particularly in high-dimensional frameworks.
- Most packages do not provide the option of weighting the predictions.
 - → We recommend adding design variables to the set of covariates, while forcing these additional covariates to always be considered.
- Variance estimators are approximately unbiased for large choices of n_0 ; for small values of n_0 , however, the variance might be under-estimated.
 - \hookrightarrow We recommend using a cross-validated variance estimator for small choices of n_0 .

Final remarks

- Statistical learning prediction procedures provide highly flexible tools for survey practitioners and can be used in many areas:
 - Model-assisted estimation,
 - Imputation,
 - Propensity score adjustment,
 - Model-based estimation,
 - Definition of the sampling design (e.g. adaptive sampling).
- Most machine learning procedures are not yet fully understood. Problems in surveys may arise:
 - Model-assisted variance underestimated by the usual variance estimator for complex models.
 - Important bias in forest estimators when design design variables are not considered for splitting.
- There is an important need for additional research in this area.

Short list of references

- Breidt, F.-J. and Opsomer, J.-D. (2000). Local polynomial regression estimators in survey sampling. *The Annals of Statistics*, 28(4):1023–1053.
- Breiman, L. (2001). Random forests. *Machine learning*, 45(1):5–32.
- Dagdoug, M., Goga, C., and Haziza, D. (2020). Model-assisted estimation through random forests in finite population sampling. *arXiv* preprint *arXiv*:2002.09736.
- Goga, C. (2005). Réduction de la variance dans les sondages en présence d'information auxiliaire: une approche non paramétrique par splines de régression. *Canad. J. Statist.*, 33(2):163–180.
- Isaki, C.-T. and Fuller, W.-A. (1982). Survey design under the regression superpopulation model. *J. Amer. Statist. Assoc.*, 77:49–61.
- McConville, K. and Toth, D. (2019). Automated selection of post-strata using a model-assisted regression tree estimator. *Scandinavian Journal of Statistics*, 46(2):389–413.
- Scornet, E., Biau, G., and Vert, J.-P. (2015). Consistency of random forests. *The Annals of Statistics*, 43(4):1716–1741.
- Toth, D. and Eltinge, J. L. (2011). Building consistent regression trees from complex sample data. *Journal of the American Statistical Association*, 106(496):1626–1636.