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Combining probability and non-probability samples

• Traditionally, National Statistical Offices have collected data by
means of probability sampling procedures −→ Design-based inference

• In recent years, there has been a shift of paradigm in NSOs that can
be explained by three main factors:

(i) a dramatic decrease in response rates;

(ii) increasing data collection costs;

(iii) the availability of various types of non-probabilistic data sources that
include administrative files, opt-in panels, social medias and satellite
information.

• Non-probabilistic data sources provide timely data but they often fail
to represent the target population of interest because of inherent
selection biases.
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Combining probability and non-probability samples

• How to integrate data from non-probability samples has attracted a
lot of attention in recent years; e.g., Rivers (2007), Bethlehem (2016),
Elliot and Vaillant (2017), Lohr and Raghunathan (2017), Kim et al.
(2019), Chen et al. (2020), Beaumont (2020) and Rao (2020).

• Estimation procedures may be classified into three broad classes :

(i) Calibration weighting of a nonprobability sample to estimated
benchmarks from a probability survey;

(ii) Statistical matching or mass imputation;

(iii) Propensity score weighting of a nonprobability sample;

• Focus of this presentation: (ii) and (iii).
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Parameters of interest

• Consider a finite population P of size N.

• y : a survey variable

• yi : y -value attached to unit i , i = 1, · · · ,N.

• Goal: estimate a finite population parameter θ0 defined as the
solution of the census estimating equation:

1

N

∑
i∈P

U(yi ; θ0) = 0.

Parameter U(yi ; θ0) Explicit form of θ0

Mean yi − θ0 Y =
∑

i∈P yi/N

Population τα−th percentile 1(yi ≤ θ0)− α τα = F−1
N (α)

David Haziza (University of Ottawa) Data integration March 29, 2022 4 / 31



The setup

• SA : sample, of size nA, selected from P according to a probability
sampling design with first-order inclusion probabilities πi (Known).

• SB : Non-probability sample, of size nB , from P.

• Typically, we would expect nB > nA.

• The data:

Data x = (x1, · · · , xp) y

SA X ∅ Probability
SB X X Non-Probability

• Ii : sample selection indicator such that Ii = 1 if i ∈ SA and Ii = 0,
otherwise.

• δi : a participation indicator such that δi = 1 if i ∈ SB and δi = 0,
otherwise.
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y x1 . . . xp Ii 1/πi
1 X X . . . X 1 1/π1
...

...
...

...
...

...
...

nA X X . . . X 1 1/πnA
nA + 1 X X . . . X 0 1/πnA+1

...
...

...
...

...
...

...
N X X . . . X 0 1/πN

Table 1: Probability sample SA (nA)

y x1 . . . xp δi
1 X X . . . X 1
...

...
...

...
...

...
nB X X . . . X 1

nB + 1 X X . . . X 0
...

...
...

...
...

...
N X X . . . X 0

Table 2: Non-probability sample SB (nB)



The setup

• πi = P(Ii = 1) = P(i ∈ SA) is known for all i ∈ P.

• Unknown probability of participation on the non-probability source:

Pr(δi = 1|xi , yi ) = Pr(δi = 1|xi ) , p(xi ;α) −→ participation model

• Positivity assumption:

p(xi ;α) > 0 for all i ∈ P.

• Outcome regression model:

yi = m(xi ;β) + εi ,

where E(εi |xi ) = 0 and V(εi |xi ) = σ2.
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The setup

• Statistical matching (or mass imputation)

Specification of an outcome regression model

The resulting estimator may be biased if the outcome regression model
is misspecified.

• Propensity score weighting

Specification of a participation model

The resulting estimator may be biased if the participation model is
misspecified.

• Regardless of the approach, the validity of point estimators relies on
the validity of an assumed model −→ point estimators are vulnerable
to model misspecification.

• Multiply robust estimation procedures are attractive because they
provide some protection against misspecification of the model.
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Two classes of models

• Class of potential outcome regression models:

M1 =
{
m(j)(x;β(j)), j = 1, 2, . . . , J

}
J models for the survey variable y

• Class of potential participation models:

M2 =
{
p(k)(x;α(k)), k = 1, 2, . . . ,K

}
K models for the participation probability

• The models in M1 (respectively in M2) may be based on different
functionals and/or different vectors of explanatory variables.
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Estimation of the β’s

• Estimators of β(j), j = 1, 2, . . . , J : obtained by solving the sample
estimating equations

1

N

∑
i∈SB

{
yi −m(j)(xi ;β

(j))
}{

∂m(j)(xi ;β
(j))

∂β(j)

}>
= 0.

• Special case: The jth model is a linear regression model −→

β̂
(j)

=

∑
i∈SB

xix
>
i

−1 ∑
i∈SB

xiyi .

• For each unit i , we obtain J predicted values:

m(1)(xi ; β̂
(1)

),m(2)(xi ; β̂
(2)

), . . . ,m(J)(xi ; β̂
(J)

)
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y x1 . . . xp Ii 1/πi
1 X X . . . X 1 1/π1
...

...
...

...
...

...
...

nA X X . . . X 1 1/πnA
nA + 1 X X . . . X 0 1/πnA+1

...
...

...
...

...
...

...
N X X . . . X 0 1/πN

Table 3: Probability sample SA (nA)

y x1 . . . xp δi
1 X X . . . X 1
...

...
...

...
...

...
nB X X . . . X 1

nB + 1 X X . . . X 0
...

...
...

...
...

...
N X X . . . X 0

Table 4: Non-probability sample SB (nB)



Estimation of the α’s

• If xi was available for i ∈ P − SB , we would estimate
α(k), k = 1 · · · ,K , by solving the census estimating equations

1

N

∑
i∈P

δi − p
(k)
i

p
(k)
i (1− p

(k)
i )

{
∂p

(k)
i

∂α(k)

}>
= 0,

where p
(k)
i ≡ p(k)(xi ;α

(k)).

• Idea in Chen et al. (2020):

1

N

∑
i∈P

δi

p
(k)
i (1− p

(k)
i )

{
∂p

(k)
i

∂α(k)

}>
− 1

N

∑
i∈P

1

1− p
(k)
i

{
∂p

(k)
i

∂α(k)

}>
= 0.
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Estimation of the α’s

• The estimators of α(k), k = 1, 2, . . . ,K can be obtained by solving

1

N

∑
i∈SB

1

p
(k)
i (1− p

(k)
i )

{
∂p

(k)
i

∂α(k)

}>
− 1

N

∑
i∈SA

π−1
i

1

1− p
(k)
i

{
∂p

(k)
i

∂α(k)

}>
= 0.

• For each unit i , we obtain K estimated participation probabilities:

p(1)(xi ; α̂
(1)), p(2)(xi ; α̂

(2)), . . . , p(K)(xi ; α̂
(K))
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Compressing the information

• For each i , define

v1i = (m(1)(xi ; β̂
(1)

),m(2)(xi ; β̂
(2)

), . . . ,m(J)(xi ; β̂
(J)

))>

and

v2i = (p(1)(xi ; α̂
(1)), p(2)(xi ; α̂

(2)), . . . , p(K)(xi ; α̂
(K)))>.

• Compress the information contained in the J outcome regression
models in M1 by fitting a linear regression model based on the units
in SB with y as the dependent variable and v1 as the vector of
explanatory variables.

• The compressed score is m̂i = v>1i τ̂ 1 with

τ̂ 1 =

∑
i∈SB

v1iv1i


−1 ∑

i∈SB

v1iyi .
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Compressing the information

• Compress the information contained in the K participation models in
M2 by fitting a linear regression model with δ as the dependent
variable and v2 as the vector of explanatory variables.

• If v2i was available for all i ∈ P, the compressed score would be
p̃i = v>2i τ̃ 2 with

τ̃ 2 =

{∑
i∈P

v2iv
>
2i

}−1 ∑
i∈P

v2iδi .

• Solution:

τ̂ 2 =

∑
i∈SA

π−1
i v2iv

>
2i


−1 ∑

i∈SB

v2i .

• The compressed score is p̂i = v>2i τ̂ 2.
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Estimate the J+K models to obtain 

(1) ( )ˆ ˆ,..., J
β β  and 

(1) ( )ˆ ˆ,..., K
α α  

Obtain the predicted values 

( ) ( )(1) (1) ( ) ( )ˆ ˆ; ,..., ;J Jm mx β x β  

and  

( ) ( )(1) (1) ( ) ( )ˆ ˆ; ,..., ;K Kp px α x α  
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Figure 1: Steps for multiply robust estimation



Propensity score estimation

• Inverse probability weighting estimator θ̂IPW : obtained by solving the
sample estimating equations:

ÛIPW (θ) =
1

N

∑
i∈SB

1

p̂i
U(yi ; θ) = 0.

• θ̂IPW :multiply robust in the sense that it remains consistent if one of
the participation models in M2 is correctly specified.

• Special case: The population mean

θ̂IPW =

∑
i∈SB

yi
p̂i∑

i∈SB
1
p̂i
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Fractionally mass imputation

• Fractionally mass imputed estimator θ̂FMI :

• A consistent estimator of θ0 is obtained by solving the following
expected estimating equations:

1

N

∑
i∈SA

π−1
i E {U(yi ; θ0) | xi} = 0.

• The expectation is unknown as f (y | x) is unknown.

• We want to approximate the conditional expectation by the weighted
mean of the fractionally imputed estimating equations:

E {U(yi ; θ) | xi} ≈
∑
j∈SB

w∗ijU(y
∗(j)
i ; θ),

where w∗ij are the fractional weights such that
∑

j∈SB w
∗
ij = 1 and the

y
∗(j)
i ’s denote the imputed values for unit i .
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y x1 . . . xp Ii 1/πi
1 X X . . . X 1 1/π1
...

...
...

...
...

...
...

nA X X . . . X 1 1/πnA
nA + 1 X X . . . X 0 1/πnA+1

...
...

...
...

...
...

...
N X X . . . X 0 1/πN

Table 5: Probability sample SA (nA)

y x1 . . . xp δi
1 X X . . . X 1
...

...
...

...
...

...
nB X X . . . X 1

nB + 1 X X . . . X 0
...

...
...

...
...

...
N X X . . . X 0

Table 6: Non-probability sample SB (nB)



Fractionally mass imputation

• Fractionally mass imputed estimator θ̂FMI :

(Step1). Obtain the weights ŵi by maximizing the empirical likelihood function

l =
∑
i∈SB

log(wi ),

subject to ∑
i∈SB

wi = 1,
∑
i∈SB

wi ε̂i = 0,

where ε̂i = yi − m̂i denotes the residual attached to i ∈ SB .

(Step2). Obtain θ̂FMI by solving the sample estimating equations

ÛFMI (θ) =
1

N

∑
i∈SA

π−1
i

∑
j∈SB

w∗ijU(y
∗(j)
i ; θ) = 0,

with w∗ij = ŵj denote the fractional weight and y
∗(j)
i = m̂i + ε̂j .
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Fractionally mass imputation

• θ̂FMI :multiply robust in the sense that it remains consistent if one of
the outcome regression models in M1 is correctly specified.

• Special case: The population mean

θ̂FMI =

∑
i∈SA π

−1
i

∑
j∈SB w

∗
ij y
∗(j)
i∑

i∈SA
1
πi
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Augmented estimator

• Augmented estimator θ̂AMR : can be obtained by solving the sample
estimating equations

ÛAMR(θ) =
1

N

∑
i∈SB

1

p̂i
U(yi ; θ) +

1

N

∑
i∈SA

π−1
i

∑
j∈SB

w∗ijU(y
∗(j)
i ; θ)

− 1

N

∑
i∈SB

1

p̂i

∑
j∈SB

w∗ijU(y
∗(j)
i ; θ) = 0.

• θ̂AMR : multiply robust in the sense that it remains consistent if one of
the models in either M1 or M2 is correctly specified.
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Simulation study

• We generated B = 1, 000 finite populations of size N = 20, 000.

• Two auxiliary variables x1 and x2: generated from a N (1, 2)

• The variable of interest y was generated according to

y = 0.3 + 2x1 + 2x2 + ε,

where ε ∼ N (0, 1).

• From each finite population, a sample SA, of size nA, was selected
using SRSWOR. We used nA = 500 and nA = 1000.

• A non-probability sample SB was generated using a Poisson sampling
design with probability

p(xi ;α) =
exp(α0 + α1x1i + α2x2i )

1 + exp(α0 + α1x1i + α2x2i )
.

• The values of α0, α1, and α2 were chosen so as to lead to nB
approximately equal to 500 and 1000.
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Simulation study

• To assess the performance of the proposed methods in the presence of
model misspecification, we defined the transformed explanatory
variables as

z1 = exp(x1/2) and z2 = x2 {1 + exp(x1)}−1 .

• The correct outcome regression and participation models were fitted
using a linear regression model and a logistic model, respectively,
based on the set of explanatory variables x = (x1, x2)>.

• The incorrect outcome regression and participation models were fitted
using a linear regression model and a logistic model, respectively,
based on the set of transformed explanatory variables z = (z1, z2)>.

• We assume that only the variables x and z were available in SA,
whereas the variables x, z and y were available in SB .
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Simulation study

• Goal: estimate

The population mean of y ;

The population 25th percentile of y .

• We computed several estimators:

(1) The (unfeasible) design-weighted estimators (Benchmark) based on SA
obtained as a solution of the following estimating equations

1

N

∑
i∈SA

π−1
i U(yi ; θ) = 0.

(2) The naive estimators (Naive) based on SB obtained as a solution of the
following estimating equations

1

N

∑
i∈SB

U(yi ; θ) = 0.
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Simulation study

(3) The parametric mass imputed estimators considered in Kim et al.
(2019) using correct outcome regression model (PFMI(1000)) and the
incorrect outcome regression model (PFMI(0100)).

(4) The doubly robust estimators proposed by Chen et al. (2020):
DR(1010), DR(1001), DR(0110) and DR(0101).

(5) The MR inverse probability weighting estimator: MRIPW(0011).

(6) The MR fractionally mass imputed estimator: MRFMI(1100).

(7) The augmented multiply robust estimators: AMR(1110), AMR(1101),
AMR(1011), AMR(0111) and AMR(1111).
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Simulation results

(nA, nB = 500) (nA, nB = 1000)
Parameter Method RB (%) RSE RRMSE RB (%) RSE RRMSE

Mean

Benchmark -0.04 1.59 1.59 -0.04 1.14 1.14
Naive 9.37 1.56 9.50 9.14 1.16 9.21

PFMI(1000) 0.02 1.59 1.59 -0.03 1.13 1.13
PFMI(0100) 5.06 1.57 5.29 4.84 1.11 4.96

DR(1010) 0.01 1.59 1.59 -0.03 1.13 1.13
DR(1001) 0.02 1.60 1.60 -0.03 1.13 1.13
DR(0110) 0.10 1.89 1.89 -0.04 1.34 1.34
DR(0101) 4.60 1.69 4.90 4.42 1.19 4.58

MRIPW(0011) 0.48 1.98 2.04 0.12 1.37 1.37
MRFMI(1100) 0.01 1.59 1.59 -0.03 1.12 1.12

AMR(1110) 0.01 1.59 1.59 -0.03 1.13 1.13
AMR(1101) 0.02 1.60 1.60 -0.03 1.13 1.13
AMR(1011) 0.01 1.59 1.59 -0.03 1.13 1.13
AMR(0111) 0.66 1.93 2.04 0.21 1.35 1.37
AMR(1111) 0.01 1.59 1.59 -0.03 1.13 1.13
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Simulation results

(nA, nB = 500) (nA, nB = 1000)
Parameter Method RB(%) RSE RRMSE RB(%) RSE RRMSE

25th percentile

Benchmark 0.02 2.85 2.85 -0.05 2.04 2.04
Naive 12.54 2.89 12.87 12.15 2.1 12.33

PFMI(1000) 1.96 2.84 3.45 1.84 2.02 2.73
PFMI(0100) 21.98 2.48 22.12 21.74 1.81 21.82

MRIPW(0011) 0.44 3.69 3.72 -0.06 2.55 2.55
MRFMI(1100) 0.03 2.52 2.52 -0.04 1.78 1.78

AMR(1110) 0.83 3.03 3.14 0.19 2.14 2.15
AMR(1101) 0.39 2.88 2.91 0.05 2.08 2.08
AMR(1011) 0.78 2.99 3.09 0.19 2.14 2.15
AMR(0111) 1.46 3.24 3.55 0.5 2.3 2.35
AMR(1111) 0.77 2.99 3.08 0.2 2.15 2.16
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Simulation results: Bootstrap variance estimation

Table 7: Monte Carlo Percent Relative Bias (RB) of the bootstrap variance
estimator, Coverage Rate (CR) %, and Average Length (AL) of confidence
intervals for the proposed estimators with nA = nB = 500.

Parameter Method RB(%) CR(%) AL

Mean

MRIPW(0011) 6.56 95.7 0.66
MRFMI(1100) 2.28 95.3 0.52
AMR(1110) 2.29 95.3 0.52
AMR(1101) 2.25 95.4 0.52
AMR(1011) 2.30 95.3 0.52
AMR(0111) 9.00 96.4 0.66
AMR(1111) 2.30 95.3 0.52

25th percentile

MRIPW(0011) 9.37 95.5 0.94
MRFMI(1100) -0.42 94.7 0.63
AMR(1110) 7.79 95.0 0.78
AMR(1101) 4.41 95.3 0.74
AMR(1011) 7.58 95.1 0.77
AMR(0111) 9.28 96.3 0.89
AMR(1111) 7.87 95.1 0.77
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Final remarks

• Here, we considered the case of parametric/semi-parametric models.

• Mass imputation: we can easily implement machine learning
procedures. However, establishing the properties of the resulting point
estimators is challenging.

• Propensity score weighting: Use of nonparametric participation
models presents some challenges and requires additional research.
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La recherche consiste à établir des liens entre des choses
qui n’ont apparemment pas de liens entre elles

Jean-Claude Deville


