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Résumé

Les enquétes aupres des ménages sont souvent sélectionnées selon un plan de sondage & plusieurs
degrés. Par exemple, le plan de sondage initial de I’enquéte Panel Politique de la Ville [1], réalisée
entre 2011 et 2014, peut modulo quelques simplifications étre vu comme le résultat d'un plan de
sondage & deux degrés. Un échantillon de quartiers est tout d’abord sélectionné, en stratifiant
selon le degré d’avancement urbain et avec des probabilités de tirage proportionnelles au nombre
de résidences principales. Un échantillon de ménages est ensuite sélectionné dans chaque quartier
tiré au premier degré, et tous les individus de 3 ans et plus de ces ménages sont théoriquement
enquétés. Les individus sont suivis pendant quatre vagues d’enquéte, avec ajout d’échantillons
complémentaires lors des vagues suivantes. Ces ajouts sont réalisés afin de compenser de 'attri-
tion et de permettre de produire des estimations transversales a toutes les vagues d’enquéte.

Meéme dans le cas le plus simple d'une estimation lors de la premiére vague, I’estimation de
variance associée est complexe en raison des différents traitements statistiques. Les poids de
sondage des ménages sont ajustés de la non-réponse, en général selon la méthode des groupes
homogénes de réponse [2], tout comme les poids individuels. Les poids obtenus sont ensuite calés,
généralement de facon simultanée [3], sur des totaux auxiliaires au niveau meénage et au niveau
individuel. Pour un plan de sondage a d degrés, la variance d’un estimateur se décompose alors en
d + 2 termes. Les d premiers sont dus aux différents degrés d’échantillonnage. Les deux derniers
sont dus & la non-réponse, respectivement de niveau ménage et de niveau individuel.

Dans ce travail, nous étudions les performances d’un estimateur de variance par bootstrap per-
mettant de tenir compte de toutes ces sources d’alea. Cet estimateur ne nécessite pas de produire
d’estimateur de variance & l'intérieur des unités primaires, ce qui le rend particuliérement simple
d’utilisation. Il conduit généralement & une estimation de variance conservative : il surestime
la variance de premier degré, mais estime correctement la variance due aux degrés suivants de
tirage. Son utilisation est illustrée sur des exemples.

Cet article est basé sur des travaux réalisés pour le Commissariat Général a 'Egalité des Terri-
toires (CGET) [6], et pour le Household Finance and Consumption Network (HFCN) [7].
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Abstract

Multistage sampling designs are commonly used for household surveys. If we wish to perform
longitudinal estimations, individuals from the initial sample are followed over time. If we also
wish to perform cross-sectional estimations at several times, additional samples are selected at
further waves and mixed with the individuals originally selected. Even in the simplest case when
estimations are produced at the first time with a single sample, variance estimation is challen-
ging since the different sources of randomness need to be accounted for, along with the needed
statistical treatments (correction of unit non-response at the household and at the individual le-
vel, correction of item non-response, calibration). In this work, we consider a bootstrap solution
which accounts for the features of the sampling and estimation process. This bootstrap solution
is usually conservative for the true variance, in the sense that the sampling variance tends to be
overestimated. The proposed bootstrap is illustrated with examples.

1 Cross-sectional estimation

We consider estimation at time ¢ for a population Ufwu of households. If y}; denotes the value
taken by some variable of interest for the household &k at time ¢, we may be interested in the
estimation of the total

Yiw = D Uk (1)

keU!

hou

I, of individuals. If y/ denotes the
value taken by some variable of interest for the individual [ at time ¢, the parameter of interest

We may also be interested in the associated population U}

1S

Yia = > u 2)
leu?

ind

1.1 Sampling design

We suppose that the sample used for estimation is selected by means of a multistage sampling
design. At the first stage of sampling, a population of Primary Sampling Units (PSUs) Uy is
defined and partitioned into H strata Uyy, ..., Urp. For example, Uy may be a set of municipalities
stratified according to some measure of size. The sample S; of PSUs is selected in U; by means
of stratified sampling. We note 7p; the inclusion probability of some PSU w;, and Sy;, the sample
of nrp, PSUs selected in the stratum Uypp,. The design weight of the PSU w; is

iy = —. (3)

Note that the sample of PSUs St and the first-stage inclusion probabilities 7y; are assumed to
be constant over time.

At the second stage and inside any PSU u; € Sy, a sample of households is selected. We note
TF;;‘Z- for the conditional probability that the household k is selected into the PSU w;, and Sf hou
for the sample of households selected in u; at time ¢. The conditional weight of some household
k is

1
di;, = — foranyk € u;, (4)
oS
(2
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and the non-conditional sampling weight of some household k is
di, = dr; x d};‘i for any k € u,. (5)

In case of full response of the households, the estimator of Y} is

H
Ot Ot : Ot t t
Yhou = Z Z d”YVi,hou with Y;,hou: Z dk|zyk (6)
h=1u; €S keSfyhou
= > diy, (7)
kesS!

hou

with S,twu the global sample of households. Both equations are of separate interest : equation
@ is useful to obtain a suitable variance estimator for Yhtou, whereas equation is simpler for
point estimation and makes use of the non-conditional sampling weights only.

We suppose that if a household k£ is selected at time ¢, all the individuals within are surveyed.
Therefore, the design weight for some individual [ at time ¢ is

di = dj for anyl € k. (8)
In case of full response of the individuals, the estimator of Y}! , is

lest

ind

with S! , the global sample of individuals.

A

1.2 Treatment of non-response

In practice, the sample S}t1 ou 18 prone to unit non-response, which leads to the observation of
a sub-sample of respondents Sﬁ’hou only. We note 7 for the response indicator of a household
k, and p’;; for the response probability of the household k. We suppose that the households re-
spond independently of one another. Also, we suppose that unit non-response is handled through
the method of Response Homogeneity Groups (RHGs), which is popular in practice. Under this
framework, it is assumed that the sample Siou may be partitioned into C' RHGs denoted as
Sihou, ceey Stqh s Such that the response probability p} is constant inside a RHG.

We note pf. for the common response probability inside the RHG S’ It is estimated by

shou®

bt
> e W
keSE o, k'K

~T
b = t
D okest. W

c,hou

(10)

with w! some weight attached to the household k. One customary choice is w} = 1, which leads
to estimating p! by the response rate inside the RHG. This will be referred to as unweighted
estimated response probabilities. Another customary choice consists in using the design weights
w! = d. This will be referred to as weighted estimated response probabilities.

Accounting for the estimated response probabilities leads to the weights corrected for non-
response

dt.
k|i

dy = dlidf«kﬁ with diku:
Pe()

13%* Journées de méthodologie statistique de I'Insee (JMS) / 12-14 juin 2018 / PARIS 3



with ¢(k) the RHG to which the household k belongs. The estimator of Y} =~ adjusted for non-
response is

H
ot _ Xt . ot _ t ot t
Y;’,hou - Z Z thri,hou with Y;“i,hou - Z drk|irkyk (12)
h=1u;eSy keSf how
— t .t
kesﬁ,hnu

Concerning the response probabilities, the unweighted and the weighted estimators are expected
to perform similarly in terms of bias. We advocate for the use of weighted probabilities, which
leads to a calibration property for the estimator adjusted for non-response. We note

Ng,hou = Z dl;ﬂ (14)
kestt:,hou

the estimator of the size of a RHG, making use of the design weights d},. Using weighted proba-
bilities enables to match exactly these estimated sizes, in the sense that the calibration equation

t .t

dyry Nt

~t - c,hou
kest, Pk

holds true. Consequently, the variance of Yrt,wu is expected to be reduced, as compared to the
same estimator using the unweighted estimated response probabilities, if the variables defining
the RHGs are partly explanatory for the variable of interest y!.

In practice, the individuals living in the responding households in S?,  are also prone to non-
response, though it is expected to be to a smaller extent. This leads to the observation of a
sub-sample of respondents Sﬁ,md only. We note 7} for the response indicator of an individual I,
and pf for the response probability of the individual [. We suppose that the individuals respond
independently of one another. Also, we suppose that this non-response is handled through the
method of RHGs. This leads to the estimated response probabilities ﬁf, and to the weights
adjusted for non-response

dik(l)
7

t
drl

with k(1) the household containing . (15)

The estimator of Y} ;, adjusted for non-response is

Via = Z dyyy; - (16)
lesf“,ind

1.3 Calibration

Lastly, the weights adjusted for non-response are calibrated on some auxiliary totals known on
the population of households and on some auxiliary totals known on the population of indivi-
duals. We note xfl out for the vector of calibration variables at the household level, and xzt-nd ; for
the vector of calibration variables at the individual level. 7

We assume that an "integrative" calibration is performed, in the sense that the calibration of
the weights d’, and of the weights d!, is performed jointly on both sets of calibration totals. This
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may be done by means of the CALMAR2 software [3], for example. The individual auxiliary
variables are first aggregated to the household level, by computing for any k € S’

,hou

t..t
/X
t o 1*ind,l
Tindl = E P (17)
lek l

The calibration is then performed at the household level on the set of calibration variables
t ¢ T [t Y
xy = <{$hou,k} ATinart ) . (18)

For the sample S’ , of households, this leads to the calibrated weights w! and to the calibrated
estimator

thal,hou = Z wiyltc (19)
kes’f‘,hou

For the sample Sﬁ,md of individuals, this leads to the calibrated weights

t
w
¢ k(@)
w, = — 20
l p? ( )

with k() the household containing the individual I, and to the calibrated estimator

Yoring = Z wiY;- (21)
lest

ryind

The sampling and estimation steps are summarized in Figure

Individual Household .
- non-response non-response - Sampling
; d d Vi
dt = driy Step 3 dt, =% Step 2 Step 1
rl = Y rk ﬁt
Py k
il M
b Calibration i
(. ]
(. ]

Eﬂ'
S‘""

FIGURE 1 - Sampling and estimation steps for a cross-sectional estimation with a single
sample

2 Computation of bootstrap weights

2.1 The full response case

In case of full response of the households, the estimator for the population of households is Y}fou,

which is given in equation @ A simple variance estimator is obtained by treating the sample
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as if the PSUs were selected with replacement. This leads to the variance estimator

H ot 2
~ ~ n ~ > oues deY',h
Var (Vo) =20 g 22 (dlmfhw— e ) . (22)

n
h=1 U €STH Ih

This variance estimator would be unbiased if the PSUs were selected with replacement. It can
be shown that when the PSUs are selected with a sampling design which is more efficient than
with-replacement sampling, this variance estimator is conservative for the true variance. That is,
this variance estimator will tend to over-estimate the true variance. Examples of sampling de-
signs which are more efficient than with-replacement sampling include simple random sampling
without replacement, in case of sampling with equal probabilities ; and conditional Poisson sam-
pling [8], Sampford sampling [9] and pivotal sampling [10,11], in case of sampling with unequal
probabilities.

Bootstrap weights may be obtained as follows. Inside the sample of PSUs S selected in the
stratum Uy, we draw a with-replacement resample Sy, of ny, — 1 PSUs, selected with equal
probabilities. For any u; € Srp,, we take

Wi, = PIh__ o Number of times the PSU u; is selected in the resample S7,.  (23)

Nip —

The bootstrap version of the estimator Y}fou is

H
Yffou* - Z Z WIidliY’ifhou (24)
h=1u;ESTp
= > dii (25)
kES;LUu
where
die = Wrignyd, (26)

is the bootstrap sampling weight of the household k, with w;) the PSU containing k. It can
be shown that these bootstrap weights enable to match the with-replacement variance estimator
given in (22), in the sense that

V* ( }A/ffou*

S;mu) = Vwr (Yffou)v (27)

with V*(-) the variance under the resampling scheme.

2.2 Adjustment of bootstrap weights for non-response and cali-
bration

In practice, the sample of households is prone to unit non-response (see Section which leads
to the sub-sample of households S%, . Also, the weights adjusted for non-response are finally

calibrated on some auxiliary totals (see Section . The final estimator is thal,hou given in equa-
tion (19).

The computation of the bootstrap weights for the households is described in Algorithm[I] In order
to compute bootstrap weights for individuals, the non-response of individuals should in theory
be taken into account, since it introduces an additional variability. In practice, it is expected
that the non-response of individuals is small to moderate as compared to the non-response of
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households. In such case, the additional variability may be safely neglected, and the bootstrap
weight for individual [ is

with k() the household containing the individual [, and where the calibrated bootstrap weights
wg are obtained as described in Algorithm [I] Note that in the presentation of Algorithm [T Step
1 (sampling), Step 2 (household non-response) and Step 4 (calibration) refer to the sampling
and estimation steps presented in Figure [Il As previously mentioned, the variability associated
to Step 3 (individual non-response) is neglected.

Algorithm 1 Computation of bootstrap weights accounting for non-response and cali-
bration in case of multistage sampling

— Step 1 : we account for the sampling design by computing, for any k € S}, the
initial bootstrap weight d, given in , as described in Section

— Step 2 : we account for the non-response of households. We first compute the
bootstrap estimated probabilities inside the RHGs

t ).t
Zkesg o WIiR)WET
t )
Dkest . Wiritnwy

Per = (29)

with ;) the PSU containing the household k. We then compute the bootstrap
weights corrected for non-response
dt,
d,, = - (30)

At

pc(k)*

with ¢(k) the RHG containing the household k.
— Step 4 : we account for the calibration. For this, the bootstrap weights dt,, are
calibrated on the estimated totals

Xﬁ,hou = Z dikxz (31)
keS:

r,hou

This leads to the bootstrap calibrated weights wf,.

2.3 Example 1 : computation of the bootstrap weights with two-
stage sampling

We now describe a small example to illustrate the construction of bootstrap weights. We consider
a population Uf_ of N} =100 households, which are clustered into 7 PSUs. We suppose that
a single stratum of PSUs is used, so that we simply note Ur; = Ur. Among the Ny = 7 PSUs
in the population, a sample of n;y = 4 PSUs is selected with probabilities proportional to the
number of households. Suppose that the PSUs w1, u9, ug and uy4, whose inclusion probabilities
are myp = 0.2, w9 = 0.4, ;3 = 0.8 and w74 = 0.8, are selected.

Inside any of these 4 PSUs, we draw a sample of ng = 3 households through without-replacement

simple random sampling. This two-stage sampling scheme leads to a self-weighted sampling de-

sign, where for any household the sampling weight is di. = %. For example, the PSU u; contains
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5 households and a sample of 3 households is selected inside, so that d’,;u = g for any £k € u;.

On the other hand, we have dj; = 7%11 = 5 so that from equation 1D dt = % for any k € u;. A
summary is given in the left hand-side of Figure

The initial sample of households is S! = {A, B, ..., L}. Among these 12 households, 9 only are

hou
surveyed due to non-response. It is accounted for by using the method of Response Homogeneity
Groups (RHGs), where the households A, I, K and L form a first RHG, and the other households
form the second one. Inside each RHG, weighted estimated response probabilities are used. For
example, we obtain in the first RHG

t .t
i oo Dot didied 3 )
! Shegt db T dy +db+dl+dl 4

1,hou

This is summarized in the right hand-side of Figure

The weights accounting for non-response are obtained by dividing the sampling weights by the
estimated response probabilities, which leads to the weights corrected for non-response given in
the left-hand side of Figure[3] A final calibration step is then applied, so that the weights enable
to match exactly the population size N} = 100 and an auxiliary total X} = 60. Note that
from the sampled values for the variable z!, we have

5 1
=100 and X! _ 100

Nﬁ shou 3 (33)

shou

This leads to the calibrated weights given in the right-hand side of Figure [3

The bootstrap is performed by first selecting a resample of ny — 1 = 3 PSUs, with replacement
and with equal probabilities, among the original sample of PSUs. In this example, we suppose
that the PSU w; is selected once, and that the PSU wuy is selected twice. From equation ,
we therefore obtain Wy = % and Wiy = %. The bootstrap sampling weights are obtained from
equation . For example, the household A has a sampling weight d = % and belongs to the
PSU w; for which Wy = %. Therefore, we obtain df,, = 18—0. All the non-zero bootstrap sampling

weights are given in the left-hand side on Figure []

The bootstrap sampling weights are corrected for non-response in the same way than in the
original correction of non-response : using the same RHGs, and weighted estimated probabilities.
For example, the households A, K and L belong to the same RHG. The households A and K are
respondents, whereas the household L is a non-respondent. The bootstrap weighted estimated
response probability inside this RHG is

t .t
Zkesi,hou dk*rk df4>k + dl}(* 3

At
o _ _3 34
& ZkGSihuu dlltc* df4* + dl}(* + dtL* 5 ( )

The bootstrap weights accounting for non-response are obtained by dividing the bootstrap sam-
pling weights by the bootstrap estimated response probabilities. This is summarized in the right
hand-side of Figure [4

A final calibration step is then applied, so that the weights enable to match exactly the estimated
population size N, =100 and the estimated total X, = 160/3. This leads to the bootstrap

r,hou

calibrated weights given in Figure

,hou
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2.4 Example 2 : computation of the bootstrap weights with a
direct sampling of the households

In some cases, the sample of households S,twu is not selected through multistage sampling, but
by direct sampling in the population U}_ . This is in fact a special case of the set-up presen-
ted in Section where each Primary Sampling Unit w; is reduced to a single household. The
bootstrap algorithm presented in Section may still be applied, but households are resampled
rather than PSUs.

To fix ideas, we describe a small example. We consider the same population U} ou OF N, ; ou = 100
households than in Section except that this population is not clustered into PSUs. We sup-
pose without loss of generality that a single stratum of households is used, and that a sample of
households S} is selected in U} through simple random sampling of size n; = 12. Therefore,
the sampling weight is df. = % for any household.

The initial sample of households is Sf = {A, B, ..., L}. Among these 12 households, 9 only are
surveyed due to non-response. It is accounted for by using the method of Response Homogeneity
Groups (RHGs), where the households A, I, K and L form a first RHG, and the other households
form the second one. Inside each RHG, weighted estimated response probabilities are used. For
example, we obtain in the first RHG

t .t
o= sl W dyrdirdi 3 (35)
! Shegt dy dy+db+dh +dl 4

1,hou

This is summarized in Figure [6]

The weights accounting for non-response are obtained by dividing the sampling weights by the
estimated response probabilities, which leads to the weights dik. A final calibration step is then
applied, so that the weights enable to match exactly the population size wau = 100 and an
auxiliary total sz o = 60. Note that from the sampled values for the variable xi;, we have

=100 and X! _ 100

wa Shou 3 (36)

Shou

The weights adjusted for non-response and the final calibrated weights are given in Figure

The bootstrap is performed by first selecting a resample of ny — 1 = 11 households, with repla-
cement and with equal probabilities, among the original sample of households. In this example,
we suppose that the household A is not selected, that the household B is selected twice, that the
household C' is selected three times, and so on. The number of times each household is selected
in the resample is given in the top part of Figure |8l The bootstrap sampling weights dff* are
obtained from equation . For example, the household C has a sampling weight d = % and
has been selected three times in the resample. Therefore, we obtain
12 300

e, = = b = ==

11 (37)

The bootstrap sampling weights are corrected for non-response in the same way than in the
original correction of non-response : using the same RHGs, and weighted estimated probabilities.
For example, the households I and L belong to the same RHG. The household I is a respondent,
whereas the household L is not. The bootstrap weighted estimated response probability inside
this RHG is

dt. 1

At
= = . 38
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The selection of the resample and the computation of the bootstrap estimated response proba-
bilities is summarized in Figure [§

The bootstrap weights accounting for non-response are obtained by dividing the bootstrap sam-
pling weights by the bootstrap estimated response probabilities. A final calibration step is then

applied, so that the weights enable to match exactly the estimated population size Nf hou = 100
and the estimated total Xﬁ how = 160/3. This leads to the bootstrap calibrated weights given in

Figure [9]

2.5 Bootstrap variance estimation

In this Section, we consider bootstrap variance estimation. Suppose that we are interested in
some parameter defined over the population of households, namely

H;LOU = f(Yffou)v (39)

. . t _ t . t . .
where f is a known function, and where Y)/ = ZkeU}thL Y. with y;. a p-vector of characteristics

observed for the household k. The estimator of 92 ou 18 then

efwu = f (chl:zl,hou) ’ (40)
where lA’CtaLh oy 18 given in equation 1} The bootstrap variance estimator for HAZOU is obtained as

described in Algorithm [2]

Algorithm 2 Computation of the bootstrap variance estimator for an estimation over
the population of households

1. Repeat B =1 000 times the bootstrap procedure described in Algorithm [T}, which
leads to the resampling weights wf, for the households k € S!

2. Note Ych,hou*(b) the bootstrap calibrated estimator of the total, obtained by using

the bootstrap calibrated weights wi,(b) computed at the bootstrap iteration b =

Shou*

1,...,B. Note 6! __(b) for the associated bootstrap estimator of ¢_  obtained by
pIUgglng YZal,hou* (b) into '
3. The Bootstrap variance estimator is

A A 1 B (. 1 B 2
%Eot <9§LOU> = m {efnd*(b> - E Z efnd*( ,)} : (41)

V=1

The bootstrap variance estimator for an estimation over the population of individuals is obtained
accordingly. Suppose that we are interested in the parameter

Ona = f(Yina) (42)

where f is a known function, and where Y , = 3" keU! | yf with y a p-vector of characteristics

observed for the individual [. The estimator of and is then

Opa = I (thaz,md) ; (43)
where Y/ctal,ind is given in equation 1} The bootstrap variance estimator for éfn 4 1s obtained as

described in Algorithm [3]
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Algorithm 3 Computation of the bootstrap variance estimator for an estimation over

the population of individuals
1. Repeat B =1 000 times the bootstrap procedure described in Algorithm [T}, which
leads to the resampling weights w, for the individuals [ € S* see equation 1)

rand?
2. Note XAfcflhmd*(b) the bootstrap calibrated estimator of the total, obtained by using
the bootstrap calibrated weights w},(b) computed at the bootstrap iteration b =
1,...,B. Note 0! .. (b) for the associated bootstrap estimator of 6 . obtained by
plugging thal,ind*(b) into -

3. The Bootstrap variance estimator is

B 2
‘z)fot (éfnd> = ﬁ Z {é;nd*(b) - %Z éfnd* (b/)} : (44)
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t+1 _ t+1 _
Xpg =0 Xpy =

t+1 _ t+1 _
Xrp~ = Xeg™ = 0

Calibration on: rt;’ulm =100 and ﬁ;}m = 160/,

wit! =700/, wit! = 1120/go
witl =160/3 wiH =1400/69

FIGURE 5 — Two-stage sampling : computation of the bootstrap calibrated weights

FIGURE 6 — One-stage sampling : selection of a sample of households and correction of
unit non-response through Response Homogeneity Groups
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diit = 100/9 difl = 40/3 diit = 40/3 dﬁ}-l — 40/3
40/3 dit = 100/9 dtil = 100/9

it =40/, dit =

t+1 =0 t'+1 =1 xﬁ[—!—[l =1 xﬁ}-l =0
xﬁ,}fl =1 xﬁgl =1 xtft =0 xtl=0
Calibrationon: N = 100 and X!' =60
witl =15 witl =15 witt = 80/7

witl = 200/21

t+1 —
Wit = 15 we - =15 witl = 200/21 whtl = 200/21

FIGURE 7 — One-stage sampling : correction of unit non-response of households and cali-

bration of weights

t+1 _ 200 t+1 _ 100 t+1_ 200 t+1_ 100
dB* - /11 d / dH* - /11 dL* - /11
t+1_ 100
dl* - /11

dEit =307y, gt = 10,

RHGc=1 RHG c =2
1 5

At+1 ~
P =3 Pt = 9

FIGURE 8 — One-stage sampling : Computation of the bootstrap sampling weights and of

the bootstrap estimated response probabilities
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t+1 _ 360 t+1 _ 180 t+1_ 360 t+1_ 200
drB* - /11 er* - /11 dr‘ * /11 dT‘I* - /11

xFtl =1 xttl=1 xftl=1 xtH=0

Calibration on: Nf}5,, = 100 and X[}, = 1%/

t+1 _ 64 t+1_ 32 t+1_ 64 t+1_ 140
Wpi =%/ wel —3/3 Wi = %%/3 Wi, *= /3

FIGURE 9 — One-stage sampling : Computation of the bootstrap weights adjusted for
non-response and of the bootstrap calibrated weights
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