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Résumé

Les enquêtes auprès des ménages sont souvent sélectionnées selon un plan de sondage à plusieurs
degrés. Par exemple, le plan de sondage initial de l'enquête Panel Politique de la Ville [1], réalisée
entre 2011 et 2014, peut modulo quelques simpli�cations être vu comme le résultat d'un plan de
sondage à deux degrés. Un échantillon de quartiers est tout d'abord sélectionné, en strati�ant
selon le degré d'avancement urbain et avec des probabilités de tirage proportionnelles au nombre
de résidences principales. Un échantillon de ménages est ensuite sélectionné dans chaque quartier
tiré au premier degré, et tous les individus de 3 ans et plus de ces ménages sont théoriquement
enquêtés. Les individus sont suivis pendant quatre vagues d'enquête, avec ajout d'échantillons
complémentaires lors des vagues suivantes. Ces ajouts sont réalisés a�n de compenser de l'attri-
tion et de permettre de produire des estimations transversales à toutes les vagues d'enquête.

Même dans le cas le plus simple d'une estimation lors de la première vague, l'estimation de
variance associée est complexe en raison des di�érents traitements statistiques. Les poids de
sondage des ménages sont ajustés de la non-réponse, en général selon la méthode des groupes
homogènes de réponse [2], tout comme les poids individuels. Les poids obtenus sont ensuite calés,
généralement de façon simultanée [3], sur des totaux auxiliaires au niveau ménage et au niveau
individuel. Pour un plan de sondage à d degrés, la variance d'un estimateur se décompose alors en
d+ 2 termes. Les d premiers sont dus aux di�érents degrés d'échantillonnage. Les deux derniers
sont dus à la non-réponse, respectivement de niveau ménage et de niveau individuel.

Dans ce travail, nous étudions les performances d'un estimateur de variance par bootstrap per-
mettant de tenir compte de toutes ces sources d'alea. Cet estimateur ne nécessite pas de produire
d'estimateur de variance à l'intérieur des unités primaires, ce qui le rend particulièrement simple
d'utilisation. Il conduit généralement à une estimation de variance conservative : il surestime
la variance de premier degré, mais estime correctement la variance due aux degrés suivants de
tirage. Son utilisation est illustrée sur des exemples.

Cet article est basé sur des travaux réalisés pour le Commissariat Général à l'Egalité des Terri-
toires (CGET) [6], et pour le Household Finance and Consumption Network (HFCN) [7].
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Abstract

Multistage sampling designs are commonly used for household surveys. If we wish to perform
longitudinal estimations, individuals from the initial sample are followed over time. If we also
wish to perform cross-sectional estimations at several times, additional samples are selected at
further waves and mixed with the individuals originally selected. Even in the simplest case when
estimations are produced at the �rst time with a single sample, variance estimation is challen-
ging since the di�erent sources of randomness need to be accounted for, along with the needed
statistical treatments (correction of unit non-response at the household and at the individual le-
vel, correction of item non-response, calibration). In this work, we consider a bootstrap solution
which accounts for the features of the sampling and estimation process. This bootstrap solution
is usually conservative for the true variance, in the sense that the sampling variance tends to be
overestimated. The proposed bootstrap is illustrated with examples.

1 Cross-sectional estimation

We consider estimation at time t for a population U thou of households. If ytk denotes the value
taken by some variable of interest for the household k at time t, we may be interested in the
estimation of the total

Y t
hou =

∑
k∈Ut

hou

ytk. (1)

We may also be interested in the associated population U tind of individuals. If ytl denotes the
value taken by some variable of interest for the individual l at time t, the parameter of interest
is

Y t
ind =

∑
l∈Ut

ind

ytl . (2)

1.1 Sampling design

We suppose that the sample used for estimation is selected by means of a multistage sampling
design. At the �rst stage of sampling, a population of Primary Sampling Units (PSUs) UI is
de�ned and partitioned intoH strata UI1, . . . , UIH . For example, UI may be a set of municipalities
strati�ed according to some measure of size. The sample SI of PSUs is selected in UI by means
of strati�ed sampling. We note πIi the inclusion probability of some PSU ui, and SIh the sample
of nIh PSUs selected in the stratum UIh. The design weight of the PSU ui is

dIi =
1

πIi
. (3)

Note that the sample of PSUs SI and the �rst-stage inclusion probabilities πIi are assumed to
be constant over time.

At the second stage and inside any PSU ui ∈ SI , a sample of households is selected. We note
πtk|i for the conditional probability that the household k is selected into the PSU ui, and S

t
i,hou

for the sample of households selected in ui at time t. The conditional weight of some household
k is

dtk|i =
1

πtk|i
for any k ∈ ui, (4)

13es Journées de méthodologie statistique de l'Insee (JMS) / 12-14 juin 2018 / PARIS 2



and the non-conditional sampling weight of some household k is

dtk = dIi × dtk|i for any k ∈ ui. (5)

In case of full response of the households, the estimator of Y t
hou is

Ŷ t
hou =

H∑
h=1

∑
ui∈SIh

dIiŶ
t
i,hou with Ŷ t

i,hou =
∑

k∈St
i,hou

dtk|iy
t
k (6)

=
∑

k∈St
hou

dtky
t
k, (7)

with Sthou the global sample of households. Both equations are of separate interest : equation

(6) is useful to obtain a suitable variance estimator for Ŷ t
hou, whereas equation (7) is simpler for

point estimation and makes use of the non-conditional sampling weights only.

We suppose that if a household k is selected at time t, all the individuals within are surveyed.
Therefore, the design weight for some individual l at time t is

dtl = dtk for any l ∈ k. (8)

In case of full response of the individuals, the estimator of Y t
ind is

Ŷ t
ind =

∑
l∈St

ind

dtly
t
l , (9)

with Stind the global sample of individuals.

1.2 Treatment of non-response

In practice, the sample Sthou is prone to unit non-response, which leads to the observation of
a sub-sample of respondents Str,hou only. We note rtk for the response indicator of a household

k, and ptk for the response probability of the household k. We suppose that the households re-
spond independently of one another. Also, we suppose that unit non-response is handled through
the method of Response Homogeneity Groups (RHGs), which is popular in practice. Under this
framework, it is assumed that the sample Sthou may be partitioned into C RHGs denoted as
St1,hou, . . . , S

t
C,hou such that the response probability ptk is constant inside a RHG.

We note ptc for the common response probability inside the RHG Stc,hou. It is estimated by

p̂tc =

∑
k∈St

c,hou
ωtkr

t
k∑

k∈St
c,hou

ωtk
, (10)

with ωtk some weight attached to the household k. One customary choice is ωtk = 1, which leads
to estimating ptc by the response rate inside the RHG. This will be referred to as unweighted

estimated response probabilities. Another customary choice consists in using the design weights
ωtk = dtk. This will be referred to as weighted estimated response probabilities.

Accounting for the estimated response probabilities leads to the weights corrected for non-
response

dtrk = dIid
t
rk|i with dtrk|i =

dtk|i

p̂tc(k)
, (11)
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with c(k) the RHG to which the household k belongs. The estimator of Y t
hou adjusted for non-

response is

Ŷ t
r,hou =

H∑
h=1

∑
ui∈SIh

dIiŶ
t
ri,hou with Ŷ t

ri,hou =
∑

k∈St
i,hou

dtrk|ir
t
ky
t
k (12)

=
∑

k∈St
r,hou

dtrky
t
k. (13)

Concerning the response probabilities, the unweighted and the weighted estimators are expected
to perform similarly in terms of bias. We advocate for the use of weighted probabilities, which
leads to a calibration property for the estimator adjusted for non-response. We note

N̂ t
c,hou ≡

∑
k∈St

c,hou

dtk (14)

the estimator of the size of a RHG, making use of the design weights dtk. Using weighted proba-
bilities enables to match exactly these estimated sizes, in the sense that the calibration equation∑

k∈St
c,hou

dtkr
t
k

p̂tk
= N̂ t

c,hou

holds true. Consequently, the variance of Ŷ t
r,hou is expected to be reduced, as compared to the

same estimator using the unweighted estimated response probabilities, if the variables de�ning
the RHGs are partly explanatory for the variable of interest ytk.

In practice, the individuals living in the responding households in Str,hou are also prone to non-
response, though it is expected to be to a smaller extent. This leads to the observation of a
sub-sample of respondents Str,ind only. We note rtl for the response indicator of an individual l,

and ptl for the response probability of the individual l. We suppose that the individuals respond
independently of one another. Also, we suppose that this non-response is handled through the
method of RHGs. This leads to the estimated response probabilities p̂tl , and to the weights
adjusted for non-response

dtrl =
dtrk(l)

p̂tl
with k(l) the household containing l. (15)

The estimator of Y t
ind adjusted for non-response is

Ŷ t
r,ind =

∑
l∈St

r,ind

dtrly
t
l . (16)

1.3 Calibration

Lastly, the weights adjusted for non-response are calibrated on some auxiliary totals known on
the population of households and on some auxiliary totals known on the population of indivi-
duals. We note xthou,k for the vector of calibration variables at the household level, and xtind,l for
the vector of calibration variables at the individual level.

We assume that an "integrative" calibration is performed, in the sense that the calibration of
the weights dtrk and of the weights dtrl is performed jointly on both sets of calibration totals. This
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may be done by means of the CALMAR2 software [3], for example. The individual auxiliary
variables are �rst aggregated to the household level, by computing for any k ∈ Str,hou

xtind,k =
∑
l∈k

rtlx
t
ind,l

p̂tl
. (17)

The calibration is then performed at the household level on the set of calibration variables

xtk =
(
{xthou,k}>, {xtind,k}>

)>
. (18)

For the sample Str,hou of households, this leads to the calibrated weights wtk and to the calibrated
estimator

Ŷ t
cal,hou =

∑
k∈St

r,hou

wtky
t
k. (19)

For the sample Str,ind of individuals, this leads to the calibrated weights

wtl =
wtk(l)

p̂tl
, (20)

with k(l) the household containing the individual l, and to the calibrated estimator

Ŷ t
cal,ind =

∑
l∈St

r,ind

wtly
t
l . (21)

The sampling and estimation steps are summarized in Figure 1.

Figure 1 � Sampling and estimation steps for a cross-sectional estimation with a single
sample

2 Computation of bootstrap weights

2.1 The full response case

In case of full response of the households, the estimator for the population of households is Ŷ t
hou,

which is given in equation (7). A simple variance estimator is obtained by treating the sample
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as if the PSUs were selected with replacement. This leads to the variance estimator

V̂wr

(
Ŷ t
hou

)
=

H∑
h=1

nIh
nIh − 1

∑
ui∈SIh

(
dIiŶ

t
i,hou −

∑
uj∈SIh

dIj Ŷ
t
j,hou

nIh

)2

. (22)

This variance estimator would be unbiased if the PSUs were selected with replacement. It can
be shown that when the PSUs are selected with a sampling design which is more e�cient than
with-replacement sampling, this variance estimator is conservative for the true variance. That is,
this variance estimator will tend to over-estimate the true variance. Examples of sampling de-
signs which are more e�cient than with-replacement sampling include simple random sampling
without replacement, in case of sampling with equal probabilities ; and conditional Poisson sam-
pling [8], Sampford sampling [9] and pivotal sampling [10,11], in case of sampling with unequal
probabilities.

Bootstrap weights may be obtained as follows. Inside the sample of PSUs SIh selected in the
stratum UIh, we draw a with-replacement resample SIh∗ of nIh − 1 PSUs, selected with equal
probabilities. For any ui ∈ SIh, we take

WIi =
nIh

nIh − 1
×Number of times the PSU ui is selected in the resample S∗Ih. (23)

The bootstrap version of the estimator Ŷ t
hou is

Ŷ t
hou∗ =

H∑
h=1

∑
ui∈SIh

WIidIiŶ
t
i,hou (24)

=
∑

k∈St
hou

dtk∗y
t
k, (25)

where

dtk∗ = WIi(k)d
t
k (26)

is the bootstrap sampling weight of the household k, with ui(k) the PSU containing k. It can
be shown that these bootstrap weights enable to match the with-replacement variance estimator
given in (22), in the sense that

V ∗
(
Ŷ t
hou∗

∣∣∣Sthou) = V̂wr

(
Ŷ t
hou

)
, (27)

with V ∗(·) the variance under the resampling scheme.

2.2 Adjustment of bootstrap weights for non-response and cali-

bration

In practice, the sample of households is prone to unit non-response (see Section 1.2) which leads
to the sub-sample of households Str,hou. Also, the weights adjusted for non-response are �nally

calibrated on some auxiliary totals (see Section 1.3). The �nal estimator is Ŷ t
cal,hou given in equa-

tion (19).

The computation of the bootstrap weights for the households is described in Algorithm 1. In order
to compute bootstrap weights for individuals, the non-response of individuals should in theory
be taken into account, since it introduces an additional variability. In practice, it is expected
that the non-response of individuals is small to moderate as compared to the non-response of
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households. In such case, the additional variability may be safely neglected, and the bootstrap
weight for individual l is

wtl∗ =
wtk(l)∗

p̂tl
, (28)

with k(l) the household containing the individual l, and where the calibrated bootstrap weights
wk∗ are obtained as described in Algorithm 1. Note that in the presentation of Algorithm 1, Step
1 (sampling), Step 2 (household non-response) and Step 4 (calibration) refer to the sampling
and estimation steps presented in Figure 1. As previously mentioned, the variability associated
to Step 3 (individual non-response) is neglected.

Algorithm 1 Computation of bootstrap weights accounting for non-response and cali-
bration in case of multistage sampling

� Step 1 : we account for the sampling design by computing, for any k ∈ Sthou, the
initial bootstrap weight dtk∗ given in (26), as described in Section 2.1.

� Step 2 : we account for the non-response of households. We �rst compute the
bootstrap estimated probabilities inside the RHGs

p̂tc∗ =

∑
k∈St

c,hou
WIi(k)ω

t
kr
t
k∑

k∈St
c,hou

WIi(k)ω
t
k

, (29)

with ui(k) the PSU containing the household k. We then compute the bootstrap
weights corrected for non-response

dtrk∗ =
dtk∗
p̂tc(k)∗

, (30)

with c(k) the RHG containing the household k.
� Step 4 : we account for the calibration. For this, the bootstrap weights dtrk∗ are

calibrated on the estimated totals

X̂ t
r,hou =

∑
k∈St

r,hou

dtrkx
t
k. (31)

This leads to the bootstrap calibrated weights wtk∗.

2.3 Example 1 : computation of the bootstrap weights with two-

stage sampling

We now describe a small example to illustrate the construction of bootstrap weights. We consider
a population U thou of N t

hou = 100 households, which are clustered into 7 PSUs. We suppose that
a single stratum of PSUs is used, so that we simply note UI1 ≡ UI . Among the NI = 7 PSUs
in the population, a sample of nI = 4 PSUs is selected with probabilities proportional to the
number of households. Suppose that the PSUs u1, u2, u3 and u4, whose inclusion probabilities
are πI1 = 0.2, πI2 = 0.4, πI3 = 0.8 and πI4 = 0.8, are selected.

Inside any of these 4 PSUs, we draw a sample of n0 = 3 households through without-replacement
simple random sampling. This two-stage sampling scheme leads to a self-weighted sampling de-
sign, where for any household the sampling weight is dtk =

100
12 . For example, the PSU u1 contains
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5 households and a sample of 3 households is selected inside, so that dtk|1 = 5
3 for any k ∈ u1.

On the other hand, we have dI1 =
1
πI1

= 5 so that from equation (5) dtk =
100
12 for any k ∈ u1. A

summary is given in the left hand-side of Figure 2.

The initial sample of households is Sthou = {A,B, . . . , L}. Among these 12 households, 9 only are
surveyed due to non-response. It is accounted for by using the method of Response Homogeneity
Groups (RHGs), where the households A, I,K and L form a �rst RHG, and the other households
form the second one. Inside each RHG, weighted estimated response probabilities are used. For
example, we obtain in the �rst RHG

p̂t1 =

∑
k∈St

1,hou
dtkr

t
k∑

k∈St
1,hou

dtk
=

dtA + dtI + dtK
dtA + dtI + dtK + dtL

=
3

4
. (32)

This is summarized in the right hand-side of Figure 2.

The weights accounting for non-response are obtained by dividing the sampling weights by the
estimated response probabilities, which leads to the weights corrected for non-response given in
the left-hand side of Figure 3. A �nal calibration step is then applied, so that the weights enable
to match exactly the population size N t

hou = 100 and an auxiliary total Xt
hou = 60. Note that

from the sampled values for the variable xtk, we have

N̂ t
r,hou = 100 and X̂t

r,hou =
160

3
. (33)

This leads to the calibrated weights given in the right-hand side of Figure 3.

The bootstrap is performed by �rst selecting a resample of nI − 1 = 3 PSUs, with replacement
and with equal probabilities, among the original sample of PSUs. In this example, we suppose
that the PSU u1 is selected once, and that the PSU u4 is selected twice. From equation (23),
we therefore obtain WI1 = 4

3 and WI4 = 8
3 . The bootstrap sampling weights are obtained from

equation (26). For example, the household A has a sampling weight dtk =
100
12 and belongs to the

PSU u1 for which WI1 =
4
3 . Therefore, we obtain d

t
k∗ =

100
9 . All the non-zero bootstrap sampling

weights are given in the left-hand side on Figure 4.

The bootstrap sampling weights are corrected for non-response in the same way than in the
original correction of non-response : using the same RHGs, and weighted estimated probabilities.
For example, the households A, K and L belong to the same RHG. The households A and K are
respondents, whereas the household L is a non-respondent. The bootstrap weighted estimated
response probability inside this RHG is

p̂t1∗ =

∑
k∈St

1,hou
dtk∗r

t
k∑

k∈St
1,hou

dtk∗
=

dtA∗ + dtK∗
dtA∗ + dtK∗ + dtL∗

=
3

5
. (34)

The bootstrap weights accounting for non-response are obtained by dividing the bootstrap sam-
pling weights by the bootstrap estimated response probabilities. This is summarized in the right
hand-side of Figure 4.

A �nal calibration step is then applied, so that the weights enable to match exactly the estimated
population size N̂ t

r,hou = 100 and the estimated total X̂t
r,hou = 160/3. This leads to the bootstrap

calibrated weights given in Figure 5.
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2.4 Example 2 : computation of the bootstrap weights with a

direct sampling of the households

In some cases, the sample of households Sthou is not selected through multistage sampling, but
by direct sampling in the population U thou. This is in fact a special case of the set-up presen-
ted in Section 1.1, where each Primary Sampling Unit ui is reduced to a single household. The
bootstrap algorithm presented in Section 2.2 may still be applied, but households are resampled
rather than PSUs.

To �x ideas, we describe a small example. We consider the same population U thou of N t
hou = 100

households than in Section 2.3, except that this population is not clustered into PSUs. We sup-
pose without loss of generality that a single stratum of households is used, and that a sample of
households Sthou is selected in U thou through simple random sampling of size nI = 12. Therefore,
the sampling weight is dtk =

100
12 for any household.

The initial sample of households is Sthou = {A,B, . . . , L}. Among these 12 households, 9 only are
surveyed due to non-response. It is accounted for by using the method of Response Homogeneity
Groups (RHGs), where the households A, I,K and L form a �rst RHG, and the other households
form the second one. Inside each RHG, weighted estimated response probabilities are used. For
example, we obtain in the �rst RHG

p̂t1 =

∑
k∈St

1,hou
dtkr

t
k∑

k∈St
1,hou

dtk
=

dtA + dtI + dtK
dtA + dtI + dtK + dtL

=
3

4
. (35)

This is summarized in Figure 6.

The weights accounting for non-response are obtained by dividing the sampling weights by the
estimated response probabilities, which leads to the weights dtrk. A �nal calibration step is then
applied, so that the weights enable to match exactly the population size N t

hou = 100 and an
auxiliary total Xt

hou = 60. Note that from the sampled values for the variable xtk, we have

N̂ t
r,hou = 100 and X̂t

r,hou =
160

3
. (36)

The weights adjusted for non-response and the �nal calibrated weights are given in Figure 7.

The bootstrap is performed by �rst selecting a resample of nI − 1 = 11 households, with repla-
cement and with equal probabilities, among the original sample of households. In this example,
we suppose that the household A is not selected, that the household B is selected twice, that the
household C is selected three times, and so on. The number of times each household is selected
in the resample is given in the top part of Figure 8. The bootstrap sampling weights dtk∗ are
obtained from equation (26). For example, the household C has a sampling weight dtk =

100
12 and

has been selected three times in the resample. Therefore, we obtain

dtC∗ =
12

11
× 3× dtC =

300

11
. (37)

The bootstrap sampling weights are corrected for non-response in the same way than in the
original correction of non-response : using the same RHGs, and weighted estimated probabilities.
For example, the households I and L belong to the same RHG. The household I is a respondent,
whereas the household L is not. The bootstrap weighted estimated response probability inside
this RHG is

p̂t1∗ =
dtI∗

dtI∗ + dtL∗
=

1

2
. (38)
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The selection of the resample and the computation of the bootstrap estimated response proba-
bilities is summarized in Figure 8.

The bootstrap weights accounting for non-response are obtained by dividing the bootstrap sam-
pling weights by the bootstrap estimated response probabilities. A �nal calibration step is then
applied, so that the weights enable to match exactly the estimated population size N̂ t

r,hou = 100

and the estimated total X̂t
r,hou = 160/3. This leads to the bootstrap calibrated weights given in

Figure 9.

2.5 Bootstrap variance estimation

In this Section, we consider bootstrap variance estimation. Suppose that we are interested in
some parameter de�ned over the population of households, namely

θthou = f
(
Y t
hou

)
, (39)

where f is a known function, and where Y t
hou =

∑
k∈Ut

hou
ytk with ytk a p-vector of characteristics

observed for the household k. The estimator of θthou is then

θ̂thou = f
(
Ŷ t
cal,hou

)
, (40)

where Ŷ t
cal,hou is given in equation (19). The bootstrap variance estimator for θ̂thou is obtained as

described in Algorithm 2.

Algorithm 2 Computation of the bootstrap variance estimator for an estimation over
the population of households

1. Repeat B = 1 000 times the bootstrap procedure described in Algorithm 1, which
leads to the resampling weights wtk∗ for the households k ∈ Str,hou.

2. Note Ŷ t
cal,hou∗(b) the bootstrap calibrated estimator of the total, obtained by using

the bootstrap calibrated weights wtk∗(b) computed at the bootstrap iteration b =

1, . . . , B. Note θ̂thou∗(b) for the associated bootstrap estimator of θthou, obtained by
plugging Ŷ t

cal,hou∗(b) into (40).

3. The Bootstrap variance estimator is

V̂ B
boot

(
θ̂thou

)
=

1

B − 1

B∑
b=1

{
θ̂tind∗(b)−

1

B

B∑
b′=1

θ̂tind∗(b
′)

}2

. (41)

The bootstrap variance estimator for an estimation over the population of individuals is obtained
accordingly. Suppose that we are interested in the parameter

θtind = f
(
Y t
ind

)
, (42)

where f is a known function, and where Y t
ind =

∑
k∈Ut

ind
ytl with y

t
l a p-vector of characteristics

observed for the individual l. The estimator of θtind is then

θ̂tind = f
(
Ŷ t
cal,ind

)
, (43)

where Ŷ t
cal,ind is given in equation (21). The bootstrap variance estimator for θ̂tind is obtained as

described in Algorithm 3.
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Algorithm 3 Computation of the bootstrap variance estimator for an estimation over
the population of individuals

1. Repeat B = 1 000 times the bootstrap procedure described in Algorithm 1, which
leads to the resampling weights wtl∗ for the individuals l ∈ Str,ind, see equation (28).

2. Note Ŷ t
cal,ind∗(b) the bootstrap calibrated estimator of the total, obtained by using

the bootstrap calibrated weights wtl∗(b) computed at the bootstrap iteration b =

1, . . . , B. Note θ̂tind∗(b) for the associated bootstrap estimator of θtind, obtained by
plugging Ŷ t

cal,ind∗(b) into (43).

3. The Bootstrap variance estimator is

V̂ B
boot

(
θ̂tind

)
=

1

B − 1

B∑
b=1

{
θ̂tind∗(b)−

1

B

B∑
b′=1

θ̂tind∗(b
′)

}2

. (44)
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Figure 5 � Two-stage sampling : computation of the bootstrap calibrated weights
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Figure 6 � One-stage sampling : selection of a sample of households and correction of
unit non-response through Response Homogeneity Groups
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Figure 7 � One-stage sampling : correction of unit non-response of households and cali-
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Figure 8 � One-stage sampling : Computation of the bootstrap sampling weights and of
the bootstrap estimated response probabilities
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Figure 9 � One-stage sampling : Computation of the bootstrap weights adjusted for
non-response and of the bootstrap calibrated weights
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