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Résumé
Dans quelle mesure les notes au Baccalauréat d’un élève reflètent-elles le niveau de ses cama-
rades de classe de Terminale ? Nous utilisons des données administratives sur les résultats au
Baccalauréat (2010-2016) pour évaluer les effets de pairs. Nous nous appuyons sur la variabilité
entre classes et entre cohortes au sein des lycées et nous restreignons l’analyse à un échantillon de
lycées au sein desquels nous n’identifions pas de politique de classes de niveau. Nous autorisons
l’effet des pairs à varier en fonction du niveau initial de l’élève, tel que mesuré par sa note au
Brevet des collèges, et nous avons recours à une typologie de classes pour étudier l’effet de la
composition globale de la classe. Nous montrons qu’une proportion élevée de bons élèves dans la
classe est surtout profitable aux plus faibles, et peut même être défavorable pour les autres pairs
de niveau élevé. A l’inverse, une proportion élevée d’élèves de faible niveau pénalise surtout les
autres élèves fragiles, et moins les bons élèves. Ces conclusions restent valables quel que soit le
sexe de l’élève considéré.

Abstract
To what extent are high school students impacted by their class composition? We use French
administrative data on Baccalauréat scores (2010-2016) to assess peer effects. We rely on within-
school, between-class and between-cohort variation to identify those effects, and focus on a
subsample of schools for which we do not identify any tracking policy across classes. We allow peer
effects to vary with students’ own prior performance and resort to class clustering to investigate
the heterogeneous effects of peers given the whole class composition. We show that a large
proportion of high-ability peers is especially profitable to low-ability peers, and may even be
harmful to high-ability peers. Conversely, a high share a low-ability peers is mostly detrimental
for other low-ability peers, and less so to high ability ones. These conclusions hold regardless of
pupils’ gender.
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Introduction
How much do students benefit or suffer from their high school classmates? Are within-class
spillovers a zero-sum game? If not, who benefits most from which type of peers? These are
key questions for educational policies. Indeed, if students exert spillover effects on their peers,
and if these externalities do not linearly add up or cancel out when a student changes class,
then fine-tuned assignment of students to classes can improve general education achievement at
virtually no cost. To address this question, we study the impact of 12th grade classroom peers
on the score at Baccalauréat, the French high school final exam, from 2010 to 2016.

Peer effects are particularly difficult to identify in an educational framework without a natural
experiment setting. One main issue is to disentangle exogenous peer effects from correlated ef-
fects, according to the terminology introduced by Manski (1995). Whereas exogenous peer effects
measure to what extent students are actually impacted by their peers’ individual characteristics-
typically, the initial school ability of peers-, correlated effects capture the fact that peers may
resemble each other in terms of individual characteristics. For instance, there may be sorting
of pupils according to initial academic level and parental background. Disentangling these two
channels is therefore made difficult in a context such as that of French high-schools where neither
the assignment to school and major, nor the assignment to classrooms within schools and major,
have reasons to be random. Here, we propose a methodology using panel data that allows us to
address these issues. In line with Ammermueller and Pischke (2009), we use school and major
fixed effects and rely on within-school, within-major variability in classroom peers, both between
classes for a given cohort and between cohorts. This strategy allows us to identify exogenous
peer effects under the assumption that class assignment process is not based on unobserved
student ability. We therefore identify a subset of schools which exhibit no sorting behavior of
pupils based on initial academic level, within a given major, across the seven cohorts considered.
Ammermueller and Pischke (2009) and Burke and Sass (2013) also present this type of sample
restriction strategy. Here, the analysis is all the more credible that we observe class formation
for several subsequent years. If for a given year, a high school statistically appears to be sorting
students across classes, it is hard to tell whether this is due to random variation or to a specific
and willful behavior. However, if statistical sorting is observed year after year, there is good rea-
son to believe this high school actually conducts a non-random allocation policy. We argue that
the identified subset of high-schools corresponds to schools which are less subject to competition
with other high-schools, so that there is less pressure for them to answer to parents’ requests in
terms of tracking.

Our paper contributes to a finer description of the impact of class composition in French
schools. Little empirical work has been conducted on this topic for secondary education in
France. Ly and Riegert (2014) study peer effects in secondary schools with the probability to
repeat the first year of high school as the main outcome, depending on class composition (mainly
peer ability and the number of persistent classmates from the previous year). Their results
are very informative on the positive impact that persistent classmates can have in a disruptive
school transition. However, the effect of peer ability on grade repetition cannot be interpreted
as a “learning” peer effect, in an institutional context where ranking effects are very likely to be
at stake (since repetition decisions are taken at the class level by the school board). Goux and
Maurin (2007) focus on another aspect of social interactions considering neighborhood effects
among middle-school aged children. Those kinds of phenomena, taking place possibly out of the
school, are out of the scope of this work. However, we argue that the class level is very relevant
in the French education system to capture the actual environment that students are exposed to
in their everyday school life. Contrary to Davezies (2004), who uses panel data for the cohort
entering 1st grade in 1997 to measure the impact of peers’ social background and school perfor-
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mance in primary schools, our work is dedicated to what happens among high school students.
As in many other countries, the end of secondary education is a very important milestone for
French students: end of high school tests are crucial for higher education pursuit. Hence, peer
effects could be persistent, more than they can be at other educational stages. Moreover, the
work undertaken on peer effects in French schools has mainly focused on the linear-in-means
model, looking at the average effect of the mean of peer characteristics.

Hoxby and Weingarth (2005) have shown how fruitful peer effect specifications going beyond
this linear-in-means model were. In these models, peer effects can vary with both the student’s
and the peers’ performance. On the one hand, high and low achieving students may be impacted
by the same peer composition to various extents. On the other hand, a student could be differ-
ently affected by a change in her average peers performance whether it is due to a general shift
in performance distribution, or if it is accounted by the presence of a few very high or very low
achieving peers. Measuring heterogeneous and non-linear peer effects is actually crucial if one
wants to increase efficiency and equity in schools and classes. Indeed, in a linear-in-means model,
moving a high achieving student from a class to another has zero cumulated effect since her pos-
itive effect on her peers is transferred from a class to another but is not quantitatively different.
To improve efficiency what we rather need to know is in which type of class a high-achieving
student has more spillover effects on her peers, and in which class a low-achieving one affects
the class performance as little as possible or/and which class composition is the most favorable
for her improvement. This kind of diagnosis is by construction impossible in the linear-in-means
model.

A growing empirical literature has since focused on heterogeneous and non-linear peer ef-
fects. Several subsequent papers rely on specifications close to that of Hoxby and Weingarth
(2005). For instance, Lavy, Silva, and Weinhardt (2012) examine the differentiated effects of
having “bad" vs. “good" peers, interacted with pupils’ own ability and gender. Their findings
are consistent with a “bad apple" model, as coined by Hoxby and Weingarth (2005), where a
few low-achievers have very negative spillovers on the rest of the class. Others have directly
investigated the effect of heterogeneous abilities in the class, exploring whether students benefit
from diverse abilities in their class, whatever their own ability level (the rainbow model in the
terminology of (Hoxby and Weingarth, 2005), or if they are better off in a homogeneous class
(the focus model). For instance, Bertoni, Brunello, and Cappellari (2017), Booij, Leuven, and
Oosterbeek (2017), Lyle (2009) introduce directly in their peer effect specification a measure of
pupil diversity (standard error, variance, interquartile range) in the classroom. Results are mixed
but they rather point to a positive effect of diversity, for a given mean performance in the class:
Rangvid (2007), Schneeweis and Winter-Ebmer (2007), Kiss (2013) find little or no significant
effect (the first two papers focus on social heterogeneity) while Vigdor and Nechyba (2006) and
Lyle (2009) assess positive effects of ability diversity in the classroom. The latter notices that
as soon as a dispersion measure is included (variance or interquartile range), there is no more
significant impact of the peer average ability.

While various measures of diversity have been introduced in peer effect estimations, to our
knowledge there has been little concern for entirely describing the composition of classrooms
and considering the effect of belonging to specific class types for students who are themselves of
different types. We aim to bridge this gap in the literature by taking advantage of rich exhaus-
tive administrative data for France, and resort to class clustering in order to go further than the
baseline heterogeneous effect models based on interactions. Indeed, using interactions allowing
each student to be differently influenced by her peers according to their performance has some
limitations. In particular, while we argue the allocation of pupils within schools may be consid-
ered as random on the subsample of schools considered, the allocation of pupils between schools
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is strongly correlated to their initial academic level. Thus, in a school-fixed-effects framework,
it is hard to distinguish heterogeneous effects depending on pupils’ type from heterogeneous
peer effects depending on the baseline classroom composition. For the sake of illustration, let
us assume that we observe that peer quality is more beneficial to low achievers than to high
achievers. In our framework, this could be due to the fact that high achievers are concentrated
in good classes, whereas low achievers are often in classes with very few high achievers. The
marginal effect of average peer academic level may be higher in classrooms where the baseline
academic level is low. Hence, it is hard to disentangle heterogeneous peer effects from non-linear
ones. We aim to overcome this interpretation issue for heterogeneous effects considering class
composition is relevant as a whole to analyze student performance. Note that we do not seek to
measure peer effects conditional of class type but directly to estimate the effect on achievement
for a peer of a given initial level to be assigned to a specific kind of class. To do so, we reduce
dimensionality using class clustering to identify a limited number of class types capturing the
kind of class environment a student is confronted to.

We present evidence of heterogeneous peer effects in French schools at the Baccalauréat level.
We show that high-ability pupils benefit from being in a class where there are not too many other
pupils of their own type. On the contrary, being in a classroom environment with a large propor-
tion of high-ability pupils may be highly beneficial to low-ability ones. A high share of low-ability
pupils is detrimental to everyone, but especially so to low-ability students. This calls for more
diversity in the composition of classroom, as it appears that the classroom type with a repartition
of pupils similar to that observed in the general population, is rather beneficial to all types of
pupils. The results obtained are rather close for boys and girls.

The remainder of this paper is as follows. Section 1 describes the French context and the
data we use. Section 2 presents the model and discusses conditions for identification. Section 3
presents our preliminary results. Section 4 concludes.

1 Institutional context and data

1.1 The French secondary education system
In France, education from 11 to 18 is separated in two institutions: collège or middle school
(from 6th to 9th grade), and lycée or high school (from 10th to 12th grade).1 In both middle and
high schools, students are assigned to the same class for all subjects and for the entire school
year, with a few exceptions- optional classes or language classes can typically be composed of
peers belonging to different classes. Hence, students spend most of the study week with the
same peers: they change teachers for each subject, but the class composition is often identical.
This feature makes the classroom one of the most relevant levels to investigate peer effects in
the French secondary education system.

Secondary education is punctuated by two exams, one at the end of collège (9th grade) -
Brevet or DNB hereinafter- and the other at the end of lycée -Baccalauréat or Bac for short.
The DNB score considered here depends on a national written exam in French, mathematics
and history-geography. These tests are graded anonymously and by teachers from other schools.
The Bac is the final exam of the high school education (12th grade). Unlike DNB, it is only
based on performance at final exams, most of them written and taken in June on the last high

1Early vocational tracks can be followed immediately after 8th grade. In addition, school is only
mandatory until sixteen year old (completed).
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school year.2 Final examination is taken for all subjects studied in high school, depending on
the major. A student needs to pass the Bac to carry on in the French higher education system.

Middle school curriculum is rather uniform, and more so since the early 2000s due to the drop
in repetition rate and the closing of some of the earliest vocational tracks, as evidenced by Caille
(2014). At the end of middle school, students apply for either vocational or general studies, with
the approval of their teachers. Among the pupils who started 6th grade in 2007, 61.7 % eventually
got access to high school general track (versus 56.9 % for the 1995 cohort) - see Caille (2014) for
more details on secondary education trajectories. For the general education high schools we focus
on, students apply to schools and are selected based on their home address, their performance in
middle school, and other criteria such as their socioeconomic background. The exact assignment
procedure depends on the administrative region considered, especially regarding the importance
of residential proximity: in several regions, the home address is associated with only one sector
high school, and pupils have an absolute priority in this sector school; in others (such as Paris),
a student is more likely to be accepted in a high school within a (wider) residential district.

In the first year of general high school (10th grade), students follow a common curriculum,
even if they can choose a few optional courses, as in collège. However, at the end of the school
year, they apply to both a track and a major- the final decision is taken by school boards. For the
student, this decision determines the next two years, the examinations taken at the end of high
school, and plays a large part in their upper education opportunities. The two main tracks are
general and technological, though students can also be redirected to vocational studies. These
tracks are divided in majors. For instance, the general track can be specialized in either science
(S), economic and social sciences (ES) or literature (L). The technological track is split in six
main tracks which are more narrowly defined : business administration sciences and technology
(STMG), industrial sciences and technology (STI2D), design and arts technology (STD2A),
laboratory sciences and technologies (STL), medical and social sciences and techniques (ST2S),
and hotel management (STHR). Figure 1 plots in the top panel the share of each major among
all general and technological Bac takers, whereas the bottom panel features the average DNB
grades of students in each major across time. Tracks and majors are strongly segregated in terms
of students’ prior school performances and social origins: high achievers are overrepresented in
the general track, in particular in the S major. We can see that the average percentile rank
at DNB is at least 10 points higher among students who eventual take Bac in the scientific
major, than among any other major. As a matter of fact, the S major is deemed to be the most
demanding and the one offering the best opportunities to carry on in upper education. If students
are unhappy with the school board ruling about their track and major, they can repeat grade 10
to have another chance to access the track and major they aspire to. Thus the repetition rate is
10 % that year, as compared to 5 % on average in middle school (Ly and Riegert, 2014). The
success rates in the different Bac tracks and majors are eventually high, conditional on reaching
the stage of taking the exam: in 2016 it was 88.5 % for all tracks (vocational included), 91.4 %
for the general track, and 91.6 % for the S major of the general track.

1.2 Data
We rely on exhaustive data from the French department of Education covering school tracks
for all students in secondary education public and publicly-funded private schools: the Fichiers
Apprenants dataset.3 This exhaustive dataset retrieves for school years 2009-2010 to 2015-2016

2Except for a few subjects, such as French, that are taken a year before, or foreign languages, that
can be the object of oral tests.

3In 2011-2012, 99.7 % of all primary and secondary education students were taught in public and
publicly-funded private establishments (department of Education calculations).
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Figure 1: Evolution of the distribution and initial academic level of pupils across majors
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Sources: Fichiers Apprenants. Lecture: 35 % of general/technological Baccalauréat takers were enrolled in the scientific
track in 2010, and their average DNB percentile rank was 69. Note: the names of some of majors in the technological tracks
were modified in 2012, the names indicated here are the current ones.

various information on students, including the school they go to, their class, the curricula they
are taught, their age and their socioeconomic background. We are also able to merge Fichiers
Apprenants with the datasets keeping track of the two secondary education exams: DNB and
Bac.

Hence, to study peer effects in 12th grade, we first extract from Bac files exam results ob-
tained by students to the first test session (before catch-up exams but after a first round of grade
adjustments) from 2010 to 2016. We are able to identify for each Bac taker her fellow classmates
in the final year, and control for her own individual characteristics. Our main outcome is the
percentile rank at the Bac exam. In our analysis we focus on students in all nine majors of the
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general and technological Bac.4 Students’ percentile rank at DNB is used as a measure of initial
school ability when entering high school. We also use this variable to characterize the academic
level of peers.5

The first column of table 1 displays some descriptive statistics of our original sample, which
comprises 2,784,409 student observations. The share of girls among general and technological
Bac takers is 54 %, and 23 % of the sample is one or more year late to take the exam (normal
timing is to take Bac at 18), having repeated at least one grade. 70 % of pupils considered are
enrolled in the general track (vs. technological), and 20 % attend a publicly-funded private school.

4The percentile rank does not distinguish between the different majors, however as indicated later, we
will allow this outcome to depend flexibly on DNB rank depending on the major considered.

5We restrict our sample to students for which the DNB score is not missing. Especially, we do not
recover DNB scores when more than five years have elapsed between DNB and Bac, that is, when the
student has repeated a grade three times or more between DNB and Bac.
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Table 1: Descriptive statistics for students taking Baccalauréat between 2010 and 2016

All students Exogenous class (EC) students Bottom half students in EC Top half students in EC

Mean Sd Mean Sd Mean Sd Mean Sd

Individual variables
Bac Score (percentile rank) 50.7 (28.8) 48.3 (28.1) 37.5 (24.2) 63.2 (26.3)
DNB Score (percentile
rank)

50.4 (28.9) 45.0 (28.3) 24.2 (14.4) 73.8 (14.3)

Girl 0.54 (0.50) 0.54 (0.50) 0.53 (0.50) 0.55 (0.50)
Late student 0.23 (0.42) 0.27 (0.44) 0.38 (0.48) 0.12 (0.32)
Foreign student 0.02 (0.14) 0.02 (0.15) 0.03 (0.17) 0.01 (0.12)
High social status 0.33 (0.47) 0.29 (0.45) 0.21 (0.41) 0.39 (0.49)
- B social status 0.16 (0.37) 0.16 (0.37) 0.16 (0.36) 0.17 (0.37)
- C social status 0.26 (0.44) 0.26 (0.44) 0.28 (0.45) 0.24 (0.43)
- low social status 0.26 (0.44) 0.29 (0.45) 0.35 (0.48) 0.20 (0.40)

Class-level variables
General track 0.70 (0.46) 0.58 (0.49) 0.39 (0.49) 0.83 (0.37)
Private school 0.20 (0.40) 0.19 (0.39) 0.14 (0.34) 0.25 (0.43)
Class size 28.3 (6.0) 27.9 (5.7) 27.3 (5.8) 28.5 (5.5)
Average class DNB Score 50.4 (19.2) 45.0 (18.8) 36.0 (15.3) 57.5 (15.8)
Share of DNB low achievers 0.25 (0.24) 0.31 (0.25) 0.42 (0.24) 0.16 (0.17)
- DNB Q2 in the class 0.25 (0.13) 0.27 (0.12) 0.30 (0.12) 0.23 (0.12)
- DNB Q3 in the class 0.25 (0.13) 0.23 (0.13) 0.18 (0.13) 0.30 (0.11)
- DNB Q4 in the class 0.25 (0.23) 0.19 (0.21) 0.10 (0.14) 0.31 (0.22)
Share of A status 0.33 (0.20) 0.29 (0.19) 0.23 (0.16) 0.37 (0.21)
- B status in the class 0.16 (0.08) 0.16 (0.08) 0.16 (0.08) 0.16 (0.09)
- C status in the class 0.26 (0.11) 0.26 (0.11) 0.28 (0.11) 0.25 (0.11)
- D status in the class 0.26 (0.17) 0.29 (0.17) 0.33 (0.17) 0.23 (0.15)

Number of observations 2,784,409 1,203,870 699,352 504,518
Source: Fichiers Apprenants. Lecture: on average, a student in final high school grade, has 25 % of peers in the bottom quarter of the DNB score distribution of all students
taking a general or a technical Baccalauréat. This share goes up to 31 % if the student belongs to a high school passing the exogeneity test- 42 % if the student is himself a
DNB low-achiever and 16 % in the other case.
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2 Methodology

2.1 Identification strategy
We examine the effect of classroom peers’ ability as measured by their DNB percentile rank on
pupils’ outcome at Bac: by focusing on the effect of the initial grade of peers, we do not have
to handle the reflection problem (Manski, 1995) triggered by using the outcome of peers as the
peer ability variable.

School × major fixed effects Our main issue here is therefore the problem of correlated
effects: since pupils are not randomly allocated across majors and schools, we must be careful
not to interpret as peer effects what actually reflects the correlation between one’s initial level
and the initial level of peers. Indeed, students appear to be segregated between high schools and
majors, depending on their initial ability. For instance, pupils in the top half of the initial ability
distribution are exposed, within their high school and major, to 62 % of pupils also belonging
to the top half of the distribution. This figure is only 34 % for pupils who are in the bottom
half of the distribution. In order to deal with this issue, we use school × major fixed effects. We
therefore rely on intra-school, intra-major variability in peer ability, both between cohorts and
between class groups. Several papers have a similar strategy, either focusing on the composi-
tion of the school × grade, hence using between cohort variation within schools;6 or examining
the effect of the class peer group, taking benefit from between-class within-school variability.7

Ammermueller and Pischke (2009) use such a methodology for France among other countries for
the primary school level. Vigdor and Nechyba (2006) compare the within-school, between-class
methodology with results obtained exploiting changes in school composition associated with the
redrawing of attendance zone boundaries, which is more likely to be random. The peer effects
measured with the school-fixed-effects methodology are somewhat reduced when using this alter-
native source of variation, reflecting the correlated effects issue, but the impact of average peer
level remains positive and significant.

Relying on between-classes variability may indeed prove problematic in the case of non-
random allocation of pupils across classrooms, within a given school (and major): in this case,
the school × major fixed effects introduced may not be sufficient to eliminate correlated effects,
and the measured peer effect may capture the correlation of pupils’ ability across classes. We
may first underline that the largest part of academic sorting within a given high-school takes
place across majors. This sorting takes place ahead of the final year of high school, that is in the
11th grade. For pupils taking Bac in 2016 for instance, 47 % of average classroom DNB score
variability is explained at the school level, and 94 % is explained at the school and the major
level. Note also that what would be problematic here is the correlation of unobserved pupils’
ability across classes, given that we already include several important observable characteristics
that capture the criteria upon which the allocation of pupils to classes may be determined.

These controls include percentile rank at DNB, which we allow to impact individual Bac
percentile rank in a flexible manner, sex, age (both age at DNB and number of years since
DNB) and parental socioeconomic status, for both the mother and father and at a very detailed
level. At the classroom level, we also control for classroom size. Finally, in order to control for
potential trends in the relative selectivity of the different majors, we include fixed effects at the
cohort × major × region level.8 The baseline linear-in-means specification would therefore write

6See for example Black, Devereux, and Salvanes, 2013; Lavy and Schlosser, 2011; Schneeweis and
Winter-Ebmer, 2007.

7Ammermueller and Pischke, 2009; Bertoni, Brunello, and Cappellari, 2017; Neidell and Waldfogel,
2010: the latter also introduce family fixed effects

8Here the cohort designates the group of pupils taking the Bac exam for one given year, regardless of
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as follows:

Baci = b0 + bm1 DNBi + b2DNBc + b3Xi + b4Xc + αms + γymr + εi (1)

for each pupil i in class group c within major m and school s, in region r, and who is taking
Baccalauréat in year y. Pupils are pooled across all cohorts from 2010 to 2016, and across all
majors. Baci is the percentile rank at Baccalauréat for pupil i, and DNBi her individual rank
at DNB. Note that the relation between individual percentile rank at DNB and at Bac is
allowed to depend on the major considered (for instance, the subjects taken at DNB matter
differently for each Bac major considered). DNBc is our baseline peer variable: that is, in the
linear-in-means model, the average percentile rank at DNB among classroom peers in the final
year of high-school.9 Xi and Xc designate the control variables, other than the individual DNB
percentile rank, respectively at the individual and classroom level. αms is the school × major
fixed effect. It covers all classes c for a given major and high-school, so that we rely on variation
across cohorts. γymr is the cohort × region × major fixed effect mentioned above.

Restricting the sample to high schools with no statistical evidence of sorting
For the school-fixed-effects approach to be valid, we need to have students assigned randomly
into classes conditional on their high school, their major, and observed characteristics. If not, our
results may capture correlated effects rather than actual exogenous peer effects. To consolidate
our identification strategy, we restrict the sample to a set of high schools which seem to assign
students to classrooms in a random manner within a given major.10 We proceed separately for
each major, so that we consider it possible that a high-school has a non-random assignment
process of pupils to classrooms for some majors only.

The spirit of this restriction is the same as in Ammermueller and Pischke (2009), however here
we make use of the repeated information about class formation across the seven years available.
The general idea is the following (the procedure is described in more details in the Appendix
section): for each given school s × major m × cohort y, if there are at least two classes, we test
the hypothesis Hmsy

0 of random allocation of students across classes. That is to say, we model
students’ probability in a given school × major × cohort msy comprising C classes (C ≥ 2), to
belong to a specific class c depending on their DNB score. With classi the variable defining
the actual classroom of student i, (and omitting indexes msy for the sake of clarity), and taking
class C as the reference, we thus estimate the following multinomial logit model:

P (classi = c/DNBi) = G(αc + βcDNBi),∀c, c = 1...C − 1

For school × major × cohort msy, the null hypothesis Hmsy
0 may therefore be written as

follows :

Hmsy
0 : ∀βc, c = 1...C − 1, βc = 0

Hmsy
0 is our hypothesis of random allocation of pupils across classrooms. For each year y,

the decision to reject Hmsy
0 or not will depend on the actual allocation process of school s within

their previous academic trajectory. The region level considered is that of the Académie, an administrative
unit at which level a large part of educational decisions are made. There are 26 academies in metropolitan
France.

9In the chosen specification, the peer variable DNBc includes pupil i’s own score in order to be
consistent with the subsequent approach in terms of class types. This does not matter here since we
also control by the individual DNB percentile rank: using the class leave-out mean rather than the mean
changes the coefficient on the peer variable by less than 2 %.

10By definition, this criterion eliminates high school with only one class within a given major.
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major m, but also on natural variability. However, if Hmsy
0 is rejected year after year, there is

good reason to think that school s has a general behavior of sorting pupils across classes (within
major m). In the opposite case, if we fail to reject the null hypothesis year after year, then we
may believe that there is no ability sorting behavior.11 We therefore build a decision rule across
cohorts, based on rejection decisions for each single year (cf. Appendix).12 For instance, one de-
cision rule could be to accept at most two rejections (out of the seven tests for years 2010...2016)
at the 12.88 % level. We show that this corresponds to a 5 % type I error for the general (ie.
across cohorts) random allocation hypothesis for the school × major considered. An alternative
decision rule also corresponding to a 5 % type I error in the general test, is to accept at most
only one rejection among the seven yearly tests, but at the 5.35 % level. That is, we dismiss
from our sample the schools × majors for which Hmsy

0 is rejected twice or more at the 5.35 %
level. Our sample of interest will be based on this latter decision rule.

The corresponding sample is described in column 2 of Table 1 – we refer to it as the EC
sample (for exogenous class). 1,203,870 observations remain in the EC sample, out of 2,280,214
for which the random allocation test was relevant (there are 504,205 observations corresponding
to a single class within a given school and major). The rejection rate of the null hypothesis of
random allocation is 37 % among schools x majors, but the rejected schools × majors comprise a
higher number of classes (3.2 vs. 2.5 in the EC sample). Finally, Table 1 shows that the number
of students per class is slightly smaller in the EC sample than in the whole sample (27.9 vs.
28.3). The difference is sufficiently small to be confident that the non-rejection of the test in our
EC sample is not due to a lack of statistical power.

The 37 % rejection rate varies greatly depending on the major considered: it is only around
20 % for the technological track, but as high as 58 % for the scientific major (and 31 to 35 %
for the other general ones): the most prestigious major seems to resort more widely to academic
tracking. This explains the lower share of general track pupils in the EC sample than in the
whole population. In turn, this composition effect accounts for some differences between the two
samples that may be noticed in Table 1: lower initial academic level, higher proportion of late
students.

We aim to document the general factors which may lead a school to resort to non-random
allocation. We argue that schools belonging to our subsample are more often characterized by the
lack of school competition in the neighboring area, whether because they are located in sparser
areas and/or because of the absence of private schools in the surroundings. The competition with
nearby private schools is a rationale which has already been put forward in the literature (see
Ly and Riegert, 2014). Indeed, private schools do not really have to sort pupils across classes,
since they are already able to recruit their students selectively: from the perspective of parents,
this already guarantees a certain homogeneity in academic level. However, since this is not the
case for public schools, these may instead implement some kind of tracking in order to attract
good pupils.13 We focus on the sorting behavior for the scientific major (it is of specific interest
since we saw that it is the more concerned by academic sorting). In Table 2 we regress the
probability for a high school to form non-random classes in the sense of our exogeneity test on
various characteristics: the distance to the closest private school14, the median wage category

11This could also be due to a lack of statistical power. However as we will see, there is no substantial
difference in class size between both types of schools.

12The spirit of this approach is somewhat similar to the Bonferroni correction used for multiple testing
issues.

13An example of sorting mechanism is the presence of one particularly outstanding class, meant to
prepare pupils for higher education (especially for Classes préparatoires).

14Here we only focus on public schools.
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in the city, the population density category in the city. After controlling for the median wage
in the high school city, we find the further away from a private competitor and the smaller
population density, the lower chance a high school assigns students in classes based on their
prior performance. These results are in line with the idea that tracking policies are related to
a high level of school competition whether from private schools or from any alternative school
options in the area because of low density of inhabitants.

Table 2: Random pupil allocation and high school environment for the S major

Probability of academic sorting of pupils

Distance to nearest private school −0.009∗∗ (0.004)
Municipality in the 1st quartile for median income 0.193 (0.190)
Municipality in the 3rd quartile for median income 0.045 (0.187)
Municipality in the 4th quartile for median income 0.256 (0.205)
Municipality in the 1st quartile for density −0.466∗∗ (0.194)
Municipality in the 3rd quartile for density 0.113 (0.201)
Municipality in the 4th quartile for density −0.171 (0.205)
Constant 0.801∗∗∗ (0.184)

Observations 975

Standard errors in parentheses - ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

2.2 Heterogeneous and non-linear effects
We wish to go further than the linear-in-means model 1. First, we introduce heterogeneous effects
by allowing the effect of peers to be flexible depending on pupil i’s initial academic level. Four
types of pupils Q1 to Q4 are defined, depending on their position in the DNB score distribution
in the whole sample (and not just the EC sample). Q1 corresponds to the lowest initial ability
group and Q4 to the highest. The last two columns of Table 1 outline the difference of situation
between pupils in the top and bottom half of the initial ability distribution (Q3 and Q4 vs. Q1
and Q2), when focusing on the EC sample. As expected, the proportion of pupils who have
repeated a grade is much lower in the top half, as for the share of low social status pupils. What
is of greater interest to us here is the classroom composition that pupils of different ability types
are faced with, across schools and majors (if random allocation holds, there should be no system-
atic differences within schools and majors): high-ability pupils have 61 % high-achievers in their
class, whereas pupils in the bottom half of the ability distribution only have 28 % high-achievers
among their peers. Class size is slightly smaller in the bottom ability group.

In order to go beyond the effect of the average peer level, we also enrich the linear-in-means
model with a direct measure of academic level diversity in the classroom (we use the standard-
error, but the results are robust to the inclusion of other measure eg. entropy index, inter-decile
or interquartile ratio). We also allow this measure to have heterogeneous effects depending
on the ability group of the pupil impacted. We include the standard error and average level
simultaneously in our model, since for instance a higher average level may be mechanically
correlated with a lower dispersion (as is observed in our data). The inclusion of the standard
error could also lead to issues related to class size: in smaller classes, the standard error will be
much more sensitive to outliers (Lyle, 2009). This is taken care of since we are also controlling
for class size. The corresponding heterogeneous effect model is therefore:
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Baci = bm,q
0 + bm,q

1 DNBi + bq2DNBc + bq3sd(DNB)c + b4Xi + b5Xc + αms + γymr + εi (2)

for student i of ability type q = 1...4, with sd(DNB)c the standard deviation of DNB in
class c and other notations identical to model 1. The heterogeneous effects model implies that
both peer variables coefficients (b2 and b3) are allowed to depend on ability type q. Note that
we also allow the relation between individual DNB and Bac (the b1s) to vary with ability type
q, as well as with major m.

Defining class types A model including the mean and standard error of peer ability does
not inform us directly on the type of classroom composition from which a given pupil benefits
most. Indeed, the marginal effect of a given peer measure may be non-linear and differ depending
on the classroom type considered: for example, the marginal effect of the ability standard devi-
ation may be low within classrooms that are already very diverse. In particular, heterogeneous
effects depending on pupils’ type must be interpreted with caution, since classroom composition
differs when considering high-achievers and low-achievers across schools (1, see above). Thus,
do effects differ with ability group because Q1−Q4 pupils are actually impacted differently, or
because they are distributed in different types of classrooms across schools?

To address this issue and identify the type of classroom environment most beneficial to each
type of pupil, our proposed solution here is to develop a typology of classes and directly exam-
ine the effect of these different types of classroom environments on pupils with different ability
levels. Compared to the canonical heterogeneous peer effects of Hoxby and Weingarth (2005),
here we look at the effect of switching from one class type to another on pupil i depending on
their ability, rather than looking at the marginal effect of pupils of a given ability depending on
i’s own ability. The method used for this classification of classes is that of partitioning around
medoids (k − medoids), which is a more robust version of k − means. This non-supervised
learning algorithm consists in identifying a fix number of clusters around representative points
(medoids) such as to minimize within-cluster sum of distances. At each step of the algorithm,
medoids are updated to be as representative as possible in their cluster, and points are reassigned
to the new closest medoid. The process stops when there is no more gain to change medoids
and cluster boundaries. Variables from which the partitioning is derived are the average level at
DNB and the standard error of the classroom. Both classroom-level variables are standardized
across all classrooms.

We do not use any information criteria to determine the number of clusters here (such as
silhouette criterion): there is no reason to believe in a “natural” underlying clustering in our
data, and we favor interpretable and balanced clusters. Once the class clusters n = 1... N are
defined, the estimation equation is the following, where the coefficients of interest to us are the
bq,n2 , which measure the effect of being in a classroom of cluster n (rather than the reference
cluster) for a pupil of type q = 1...4:

Baci = bm,q
0 + bm,q

1 DNBi +
N∑

n=1
n 6=ref

bq,n2 1type(c)=n + b3Xi + b4Xc + αms + γymr + εi (3)

Here again, we consider pupil i in class c of type n, within major m, school s, region r and
cohort y. The relation between percentile rank at DNB and percentile rank at Bac is again
flexible depending on major m and ability quartile q. Xi and Xc are our control variables at the
pupil and classroom level, αms is the school × major fixed effect and γymr the cohort × major
× region fixed effect.
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3 Results

3.1 From the linear-in-means model to heterogeneous effects
Table 3 presents results for several specifications of our baseline peer effects model. Columns (1)
to (3) focus on our EC sample within which we suppose allocation to classrooms to be random.
Column (1) shows estimates for an extension of the linear-in-means model 1, where the standard
deviation of peer initial ability is also introduced. Both average peer ability and diversity of peer
ability appear to have a positive impact on the result at Baccalauréat. The magnitude of the
average peer effect (+0.083 Bac percentile rank for +1 peer average percentile rank at DNB),
lies within the range of previous findings in the empirical literature: in the review carried out
by Sacerdote (2011), the effect of a 1.0 point raise in average peer score ranges is most often
comprised between 0.05 and 0.4 points. For a given average level of peers, class standard error
in initial level also exerts a significant positive effect, although smaller. Control variables impact
the Bac score in the direction that would be expected: the age at DNB as well as the lapse of
time between DNB and Bac, which reflect the fact that pupils repeated a grade before or after
DNB, both impact negatively the Bac score for a given DNB grade. Being female or a French
national has a positive impact. Class size exerts a significant negative effect: reducing class size
by one pupil has roughly the same effect as increasing peer average initial level by one percentile
rank.

The effect of the average class level, and even more so the effect of the class diversity in
terms of initial academic levels, vary widely depending on the type of pupil impacted, as shown
in column (2) which introduces heterogeneous effects depending on pupil i’s initial academic
level. Column (2) therefore corresponds to specification 2. The effect of raising the peer average
percentile rank at DNB by 1 point ranges from 0.029 for the high-ability pupils (Q4), to 0.140
for the lowest-ability pupils (Q1): low-ability pupils seem to be the ones who benefit the most
from a raise in the ability level of their peers. For a given average level, the effect of diversity
is negative for the lowest-ability pupils, whereas it is positive for the high-ability ones. Here we
encounter the identification issue mentioned in Section 2: is diversity detrimental to low-ability
pupils because they have low ability, or because they are distributed across schools in classes
which may already have high levels of diversity? This will be addressed in the subsection 3.3.

Columns (3) and (4) respectively illustrate the need for including school × major fixed-
effects, and for limiting our analysis to the Exogenous class sample, in order to tackle the sorting
of pupils respectively between schools and majors, and between classes. When not including
school fixed effects in column (3), the estimates for mean peer effects are much higher, suggesting
strong positive sorting on unobservables across high schools, especially for high-ability students.
Without fixed effects, the impact of diversity also appears more detrimental for low-ability pupils
and neutral for high-ability ones. The bias induced by sorting between classrooms seems to go in
the same direction, although it appears generally smaller (column (4)): here model 2 is estimated
including school × major fixed effects, but is estimated using the whole sample, irrespective of
whether schools passed the random allocation test or not.
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Table 3: Introducing heterogeneous and diversity effects in the linear-in-means model

(1) (2) (3) (4)
Class average level 0.0825∗∗∗ (0.00417)
Class standard error 0.0165∗ (0.00703)
Class average level # Q1 0.140∗∗∗ (0.00643) 0.318∗∗∗ (0.00544) 0.192∗∗∗ (0.00402)

# Q2 0.124∗∗∗ (0.00565) 0.317∗∗∗ (0.00469) 0.195∗∗∗ (0.00339)
# Q3 0.0983∗∗∗ (0.00586) 0.306∗∗∗ (0.00492) 0.205∗∗∗ (0.00341)
# Q4 0.0287∗∗∗ (0.00726) 0.249∗∗∗ (0.00643) 0.175∗∗∗ (0.00404)

Class std. error # Q1 -0.0892∗∗∗ (0.0121) -0.142∗∗∗ (0.0118) -0.126∗∗∗ (0.00846)
# Q2 -0.0873∗∗∗ (0.0126) -0.196∗∗∗ (0.0123) -0.146∗∗∗ (0.00822)
# Q3 -0.0327∗ (0.0134) -0.195∗∗∗ (0.0130) -0.0871∗∗∗ (0.00822)
# Q4 0.203∗∗∗ (0.0153) -0.0137 (0.0144) 0.136∗∗∗ (0.00852)

Female 2.462∗∗∗ (0.0438) 2.468∗∗∗ (0.0438) 2.475∗∗∗ (0.0441) 1.855∗∗∗ (0.0281)
Age at DNB -6.375∗∗∗ (0.0498) -6.371∗∗∗ (0.0498) -6.507∗∗∗ (0.0503) -6.175∗∗∗ (0.0336)
DNB-Bac time lapse -4.139∗∗∗ (0.0412) -4.153∗∗∗ (0.0412) -4.228∗∗∗ (0.0415) -4.782∗∗∗ (0.0285)
French national 4.212∗∗∗ (0.134) 4.207∗∗∗ (0.134) 4.276∗∗∗ (0.135) 4.402∗∗∗ (0.0911)
Class size -0.0664∗∗∗ (0.00468) -0.0667∗∗∗ (0.00468) -0.112∗∗∗ (0.00385) -0.0505∗∗∗ (0.00302)
Constant 145.3∗∗∗ (9.663) 147.0∗∗∗ (9.662) 118.8∗∗∗ (1.078) 140.5∗∗∗ (5.779)
School fixed effects Y es Y es No Y es
Additional controls Y es Y es Y es Y es
Sample EC EC EC All
N 1,201,190 1,201,190 1,201,190 2,777,672
adj. R2 0.316 0.316 0.403 0.353
Standard errors in parentheses - ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. On top of school × major fixed effects and cohort × major × region fixed effects,
additional controls include parents’ social background (32 groups), and initial DNB percentile rank interacted with major x DNB quartile Q1-Q4. Pupils
of types Q1 to Q4 range from lowest to highest achieving in terms of DNB score.
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3.2 Defining class types
We use K-medoid partioning to identify eight clusters of class compositions, among all classes of
all schools in the general and technological tracks. Figure 2 characterizes those clusters in terms
of the average DNB percentile rank, the DNB percentile rank standard error, and the share of
each type of students Q1...Q4 in classes. Plotting the within-class standard deviation against
the class average (Figure 2 top panel) allows us to see clearly how classes with a very high or
very low average necessarily have a low standard deviation.

Cluster 5, which is central both in terms of average and standard deviation of DNB, will
be our reference cluster in specification 3.15 It comprises a large share of pupils from the cen-
ter of the ability distribution, whereas pupils from both ends are underrepresented (Figure 2
bottom panel). Cluster 4 is also central in terms of average ability level within the classroom,
however the within-class ability standard deviation is much higher. The bottom panel of Fig-
ure 2 shows that students of each Q1−Q4 type are almost equally represented in cluster 4 classes.

Clusters 1, 2 and 3 are all characterized by a rather low average ability, with an over-
representation of pupils from Q1. From cluster 1 to cluster 3, average ability increases, and so
does ability diversity. Indeed in cluster 1, a very high proportion of low-ability pupils (around
50 to 80 %) leads both to a very low average ability and a very low diversity of pupils. Moving
to clusters 2 and 3, the proportion of Q2 remains roughly the same, whereas Q1 pupils are pro-
gressively swapped with pupils from the top half of the distribution.

Oppositely, clusters 6, 7 and 8 exhibit a relatively strong presence of high achieving students.
Cluster 8 has the highest average ability, with 40 to 80 % Q1 pupils, which translates into a very
low diversity: it is the counterpart of cluster 1 at the other end of the ability distribution.

15Partitions with 7 clusters or less do not provide such a "central" cluster, which is why we favored the
8-clusters partition in terms of interpretation.
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Figure 2: Mean and standard error of DNB percentile rank, and share of students from
each ability type, in K-medoid clusters
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3.3 The heterogeneous effect of class types on pupils
Table 4 shows the set of coefficients bq,n2 , q = 1...4, n = 1...8, n 6= 5 from model 3. As mentioned
earlier, median cluster 5 is chosen as the reference group. The first two columns serve as re-
minders of the average characteristics of each cluster. Figure 3 plots the effects for each cluster
and type of pupil impacted for easier comparison of the relative effects between clusters.

Effects of belonging to a given class type are clearly heterogeneous according to the stu-
dent’s own ability. Let us first consider the effect of moving from the median class (cluster 5,
our reference) to a class where virtually the DNB score distribution was shifted to the right,
that is to say with more DNB low achievers and less high achievers (cluster 1 to 3). Effects of
such a rightward distortion of the distribution has negative and significant effects for Q1 and
Q2 students. However, it has no significant effect for Q3 and Q4 students (although standard
errors are large for the latter group, due to their under-representation especially in classes of
clusters 1 and 2). We may relate this to the Bad apple model discussed in Hoxby and Weingarth
(2005), which states that an increase in the number of bottom-achieving students has a negative
effect on the achievement of students due to their disruptive behavior which in turn "triggers
disruptive behavior from children who would otherwise be attentive". Here, it appears that pupils
are not affected equally, and that who it is pupils also at the bottom of the ability distribution
who react the most to the disruptive behavior of their peers.

Oppositely, leftward modification in the class DNB score distribution is beneficial to Q1-Q3
students, who see their Bac result increase by 1 to 5 percentile ranks when switching from a class
in cluster 5 to a class in cluster 6 to 8. This is in stark contrast with top-ability students who are
negatively impacted by the change in class composition implied by switching from cluster 5 to
clusters 7 and 8 (-0.562 and -1.939 Bac percentile ranks respectively). This result is in line with
the idea that invidious comparison with peers can be detrimental to individual performance:
high achievers can suffer from being in class with too high a proportion of other high achievers.

Finally, moving from cluster 5 to classes of cluster 4 with the highest diversity seems to be
slightly beneficial for all types of students – except for the lowest-ability ones, for which the
effect is not significant. The only other cluster which appears to be beneficial for all (or at least
non-detrimental) is cluster 6. But contrary to cluster 4, starting from a sample of students rep-
resentative of the whole population, the cluster 6 class type could not be achieved for all classes.

Table 5 displays the effect for a student of a given initial level (Q1 to Q4) to switch from
a class of cluster 5 for each of the other seven types, depending on the student’s gender. On
the whole, effects are rather close for boys and girls, and previous comments remain valid. Two
points are however worth noting. First, for pupils of type Q2 and Q3, the positive effect of
moving to a more diverse class (from cluster 5 to cluster 4) is present only for girls. For boys,
the benefit of being in a more diverse environment appears significant only for the top-ability
student. Second, for the top quartile, the effect of belonging to a class with a large share of high
achievers seems to be more detrimental for girls than for boys, implying that they would be more
subject to the invidious comparison effect.
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Table 4: Peer effects estimated with class type and student performance interactions

Cluster Average score Score Std error Q1 Q2 Q3 Q4
1 −−− − -1.396∗∗∗ -0.481∗ 0.332 -0.757

(0.216) (0.196) (0.305) (1.558)
2 −− ∼ -1.130∗∗∗ -0.601∗∗∗ -0.0583 -0.405

(0.203) (0.166) (0.197) (0.423)
3 − + -1.157∗∗∗ -0.292 -0.000926 0.119

(0.192) (0.150) (0.162) (0.252)
4 ∼ ++ -0.293 0.363∗ 0.753∗∗∗ 0.779∗∗∗

(0.207) (0.163) (0.162) (0.204)
5 ∼ ∼ (ref)
6 + + 0.978∗∗∗ 1.222∗∗∗ 1.132∗∗∗ 0.311

(0.260) (0.173) (0.156) (0.196)
7 ++ ∼ 2.982∗∗∗ 2.897∗∗∗ 1.613∗∗∗ -0.562∗∗

(0.425) (0.209) (0.170) (0.207)
8 +++ − 2.611 5.187∗∗∗ 3.316∗∗∗ -1.939∗∗∗

(2.023) (0.411) (0.237) (0.243)
N 1,201,190

adj. R2 0.316
Standard errors in parentheses - ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Controls are identical
to those used in Table 3. Pupils of types Q1 to Q4 range from lowest to highest achieving in
terms of DNB score.

Figure 3: Effects of belonging to cluster of a given type
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Sources: Fichiers Apprenants. Lecture: Belonging to cluster 1 (rather than reference cluster 5) has a 0.332 effect on the
percentile rank at Bac for pupils in Q3. Note: the displayed coefficients are those of Table 4.
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Table 5: Peer effects estimated with class type and student performance interactions
separately for girls and boys

Q1 Q2 Q3 Q4
Cluster Girls Boys Girls Boys Girls Boys Girls Boys

1 -1.361∗∗∗ -1.387∗∗∗ -0.317 -0.734∗ 0.249 0.305 -1.232 -1.694
(0.296) (0.316) (0.267) (0.288) (0.409) (0.458) (1.896) (2.664)

2 -1.060∗∗∗ -1.079∗∗∗ -0.510∗ -0.650∗∗ -0.0681 -0.0938 -1.177∗ 0.619
(0.280) (0.295) (0.229) (0.242) (0.270) (0.290) (0.552) (0.655)

3 -0.961∗∗∗ -1.208∗∗∗ -0.172 -0.315 0.206 -0.251 -0.0754 0.456
(0.263) (0.283) (0.199) (0.227) (0.210) (0.252) (0.309) (0.425)

4 -0.194 -0.192 0.678∗∗ 0.0469 1.094∗∗∗ 0.311 0.691∗∗ 0.816∗
(0.279) (0.311) (0.212) (0.253) (0.205) (0.259) (0.249) (0.350)

5 ref
6 0.917∗ 1.035∗∗ 1.382∗∗∗ 1.042∗∗∗ 1.360∗∗∗ 0.905∗∗∗ 0.0829 0.793∗

(0.362) (0.377) (0.233) (0.258) (0.202) (0.242) (0.242) (0.330)
7 2.857∗∗∗ 2.809∗∗∗ 2.835∗∗∗ 2.708∗∗∗ 1.717∗∗∗ 1.441∗∗∗ -0.743∗∗ -0.0367

(0.637) (0.578) (0.294) (0.300) (0.227) (0.258) (0.259) (0.341)
8 3.259 2.418 5.165∗∗∗ 4.758∗∗∗ 3.485∗∗∗ 2.953∗∗∗ -2.049∗∗∗ -1.434∗∗∗

(2.992) (2.760) (0.628) (0.551) (0.335) (0.341) (0.315) (0.388)
N 649,452 551,738 649,452 551,738 649,452 551,738 649,452 551,738

adj. R2 0.349 0.271 0.349 0.271 0.349 0.271 0.349 0.271
Standard errors in parentheses - ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Controls are identical
to those used in Table 3. Pupils of types Q1 to Q4 range from lowest to highest achieving
in terms of DNB score.

4 Conclusion
We use French exhaustive administrative data through 2010 to 2016 and exploit within school
and major variation to assess peer and class composition effects on Baccalauréat. After restrict-
ing our analysis to a subsample for which the school fixed effect specification hypotheses are
credible, we identify eight class types to capture class composition as a whole. This strategy
allows us to disentangle heterogeneity and non-linearity of peer effects.

We find peer and class composition effects vary greatly according to the student’s ability.
Contrary to what could be expected, top-ability students do not remain unaffected by their class
environment. As a matter of fact, we find that students are negatively impacted by classes when
their own ability level is over-represented, compared to an average class.

Hence, a large proportion of high-ability peers is especially profitable to low-ability peers,
whereas it may even be detrimental to other high prior performance students. Conversely, a high
share a low-ability peers is mostly harmful for other low-ability students, and less so to high
ability ones. These general conclusions hold regardless of pupils’ gender.

These results contrast partially with the ones we obtain using our baseline specification,
where the effect of average and standard deviation peer prior performance are interacted with
the student’s ability. Estimates from this baseline indicate that within-class peer diversity is only
beneficial for high ability students. This finding seems to arise from the fact that without taking
into account the whole class composition, controlling for the standard error in the class mainly
consists for low ability students to consider situations where they are surrounded by many other
low achievers. Hence, using class types in the specification allows us to distinguish upward and
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downward diversity and assess that poor ability students actually benefit from very good classes.
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Appendix

Description of the test for exogenous assignment of students in
classes within schools
A single-year test does not take advantage of the repeated information we have across years
regarding class formation in a given high school. We therefore consider a test which relies on
information across the seven years of observations, in order to determine if schools generally
exhibit sorting practices, ie. form classes endogenously year after year.

For a given high school s and major m:

• We define the general assumption Hms
0 that school s has a policy of random allocation of

students to classes for the major m.

• We may also define Hmsy
0 for a particular year y, as the testable assumption that allocation

of students to classes is random for year y.

• For each year y, and for each high school and major ms we estimate the multinomial
regression described in section 2 and define Hmsy

0 for each year accordingly. That is:

• Hmsy
0 : ∀βyc , c = 1...C − 1, βyc = 0

• Hms
0 then corresponds to: ∀y = 1...7, ∀βyc , cy = 1...Cy − 1, βyc = 0

• Let us suppose that we want P(reject Hms
0 / Hms

0 true) = 0.05

• We want to base the rejection decision for Hms
0 on the 7 separate rejection decisions for

the single-year tests Hmsy
0 , y = 1...7

• Suppose we define the rejection rule for Hms
0 as "rejecting Hmsy

0 twice or more out of
the 7 single-year tests". Then how should we set the significance level α for the rejection
decision of Hmsy

0 (α =P(reject Hmsy
0 / Hmsy

0 true), such that P(reject Hmsy
0 twice or more

/ Hms
0 true) = 0.05 ?

– Suppose Hms
0 true. Then Hmsy

0 is true ∀y = 1...7 (high school s practices random
assignment in any given year, for major m) and ∀y = 1...7, P(reject Hmsy

0 )=α and
we have :
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– P (Hmsy
0 rejected 0 out of 7 trials) = (1− α)7

– P (Hmsy
0 rejected once out of 7 trials) = 7α(1− α)6

– So P (Hmsy
0 rejected twice or more out of 7 trials) = 1− (1− α)7 − 7α(1− α)6

– We are therefore looking for α such that 1 − (1 − α)7 − 7α(1 − α)6 = 0.05. The
corresponding numerical value for α is α = 0.0534. so that we can keep high schools
for which Hmsy

0 is only rejected 0 or 1 time out of 7 at the 0.0534 % level.

α must be set the following way depending on the number of Hmsy
0 rejections out of 7 that

we want to accept (with a general type I error set at 5 % in any case):

Corresponding α for Hmsy
0 , depending on

number of years Y available
Decision rule Y=7 Y=6 Y=5 Y=4 Y=3
Refuse any Hmsy

0 rejection 0.0073 0.0085 0.0102 0.0127 0.0170
Accept 1 Hmsy

0 rejection at most 0.0534 0.0628 0.0764 0.0976 0.1354
Accept 2 Hmsy

0 rejections at most 0.1288 0.1532 0.1893 0.2486 0.3684

13es Journées de méthodologie statistique de l’Insee (JMS) / 12-14 juin 2018 / PARIS 23


	Institutional context and data 
	The French secondary education system
	Data

	Methodology 
	Identification strategy
	Heterogeneous and non-linear effects

	Results 
	From the linear-in-means model to heterogeneous effects
	Defining class types
	The heterogeneous effect of class types on pupils 

	Conclusion 

