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Résumé

Recensements, enquêtes ou encore sources administratives, peu importe l'origine des don-
nées, elles sont toutes susceptibles de présenter des données manquantes. Le traitement de la
non-réponse est d'un intérêt pratique très important étant donnée la baisse constante du taux de
réponse aux enquêtes depuis plusieurs décennies. Nous considérons le problème de l'estimation
des probabilités de réponse dans un contexte de pondération pour correction de la non réponse
totale. Les probabilités de réponse peuvent être estimées par des méthodes paramétriques ou non
paramétriques.

La classe des modèles paramétriques inclut la régression logistique comme cas particulier.
Les méthodes paramétriques présentent cependant plusieurs inconvénients : (i) elles ne sont pas
robustes par rapport à une mauvaise spéci�cation de la forme du modèle, (ii) elles ne sont pas
robustes à la non prise en compte d'éventuelles interactions entre prédicteurs ou de termes qua-
dratiques, (iii) elles peuvent conduire à des probabilités estimées très proches de zéro, conduisant
à des estimateurs potentiellement instables (Little et Vartivarian, 2005, et Beaumont 2005).

La classe des méthodes non paramétriques comprend notamment la régression par polynômes
locaux (Da Silva et Opsomer, 2009), la pondération de classes formées sur la base d'une estima-
tion préliminaire des probabilités de réponse (Little, 1986, Eltinge et Yansaneh, 1997, Haziza et
Beaumont, 2007), l'algorithme CHi square Automatic Interaction Detection (CHAID de Kass,
1980), Classi�cation and Regression Trees (CART Breiman et al., 1984, Phipps et Toth, 2012),
Conditional inference trees (Ctree) pour des cibles simples ou multiples (Hothorn et al. 2006).

Nous présentons une vaste étude par simulation pour comparer un grand nombre de méthodes
d'estimation des probabilités de réponse par apprentissage supervisé, dans un cadre de population
�nie. Nous couvrons un large champ de méthodes paramétriques ou non, avec des règles de
décisions simples ou agrégées telles que Bagging, Random Forests (Breiman, 1996), Boosting
(Freund et Shapire, 1996, Friedman et al. 2000) ; voir également Hastie et al. (2009) pour une
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revue très complète des méthodes d'apprentissage. Pour chaque méthode, ce sont les performances
de l'estimateur par expansion et de l'estimateur de Hajek d'un total qui sont mesurées en termes
de biais relatif et d'e�cacité relative.

Abstract

We consider the problem of estimating the response probabilities in the context of weighting
for unit nonresponse. The response probabilities may be estimated using either parametric or
nonparametric methods. In practice, nonparametric methods are usually preferred because, unlike
parametric methods, they protect against the misspeci�cation of the nonresponse model.

In this work, we conduct an extensive simulation study to compare methods for estimating
the response probabilities in a �nite population setting. In our study, we attempted to cover a
wide range of (parametric and nonparametric) "simple" methods as well as aggregation methods
like Bagging, Random Forests, Boosting. For each method, we assessed the performance of the
propensity score estimator and the Hajek estimator in terms of relative bias and relative e�ciency.

Introduction

National statistical o�ces like Insee in France, Statistics Canada or Eurostat at an inter-
national level, aim at providing solid foundations for good informed decisions by elected re-
presentatives, �rms, unions, non-pro�t organizations, as well as individual citizens. In order to
better understand demography, society and economy, analysts and researchers implement statis-
tic methods to analyse data. The latter can be provided by censuses, surveys and administrative
sources. Regardless of the type of data, it is virtually certain one will face the problem of missing
values. Survey sampling theory meets new �elds of research in association with machine learning
and big data handling.

Surveys statisticians distinguish unit nonresponse from item nonresponse. The former occurs
when no usable information is available on a sample unit, whereas the latter occurs when some
variables (but not all) are recorded. Nonresponse may a�ect the quality of the estimates when the
respondents and the nonrespondents exhibit di�erent characteristics with respect to the survey
variables. The main e�ects of nonresponse consist in : (i) bias of point estimators, (ii) increase
of the variance of point estimators (due to the fact that the observed sample has a smaller size
than the one initially planned), and (iii) bias of the complete data variance estimators (Haziza,
2009). Unit nonresponse is usually handled through weight adjustment procedures (Groves et al.
2001, and Särndal and Lundström 2005), whereas item nonresponse is treated by some form of
imputation (Brick and Kalton 1996). These approaches (weight adjustment or imputation) share
the same goals : reduce the nonresponse bias and, possibly, control the nonresponse variance.

Turning to weighting adjustment procedures for handling unit non-response, two types of
weighting procedures are commonly used (e.g., Särndal, 2007 and Haziza and Lesage, 2016) : in
the �rst, the basic weights are multiplied by the inverse of the estimated response probabilities,
whereas the second uses some form of calibration, that includes post-strati�cation and raking as
special cases, for adjusting the basic weights. In this work, we focus on weight adjustment by
the inverse of the estimated response probabilities. To protect against a possible model misspe-
ci�cation, it is customary to form weighting classes (also called response homogeneous groups)
so that within a class the sample units have similar response probabilities (Little, 1986, Eltinge
and Yansaneh, 1997 and Haziza and Beaumont, 2007).

The response probabilities may be estimated using either parametric or nonparametric me-
thods. The class of parametric models includes logistic regression as a special case. There are
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several issues associated with the use of a parametric model : (i) they are not robust to the miss-
peci�cation of the form of the model ; (ii) they are not robust to the non-inclusion of interactions
or predictors that account for curvature (e.g., quadratic terms), both of which may not have
been detected during model selection ; (iii) they may yield very small estimated response proba-
bilities, resulting in very large nonresponse adjustment factors, ultimately leading to potentially
unstable estimates ; e.g., Little and Vartivarian (2005) and Beaumont (2005). In practice, nonpa-
rametric methods are usually preferred because, unlike parametric methods, they protect against
the misspeci�cation of the nonresponse model. The class of nonparametric methods include ker-
nel regression (Giommi, 1984, Giommi 1987, Da Silva and Opsomer, 2006), local polynomial
regression (Da Silva and Opsomer, 2009), weighting classes formed on the basis of preliminary
estimated response probabilities (Little, 1986, Eltinge and Yansaneh, 1997, Haziza and Beau-
mont, 2007), the CHi square Automatic Interaction Detection (CHAID) algorithm (Kass, 1980),
Classi�cation and regression trees (Breiman et al., 1984, Phipps and Toth, 2012), Conditional
inference trees (Ctree) for simple and multiple targets trees (Hothorn et al. 2006). To estimate
the response probabilities in a �nite population setting, we cover a wide range of (parametric and
nonparametric) "simple" methods as well as aggregation methods like Bagging, Random Forests
(Breiman, 1996), Boosting (Freund and Shapire, 1996 and Friedman et al. 2000) ; see also Hastie
et al. (2009) for a comprehensive overview of machine learning methods. For each method, we
assessed the performance of the propensity score estimator and the Hajek estimator in terms of
relative bias and relative e�ciency.
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1 Theoretical set up

Let U = {1, 2, ..., N} be a �nite population of size N . In most surveys conducted by statistical
agencies, information is collected on a potentially large number of survey variables and the aim is
to estimate many population parameters. This type of surveys is often referred to as multipurpose
surveys. Let y be a generic survey variable. We are interested in estimating the �nite population
total, ty =

∑
i∈U yi, of the y-values. We select a sample S, of size n, according to a sampling design

p(S) with �rst-order inclusion probabilities πi, i = 1, · · · , N. In the absence of nonresponse, a
design-unbiased estimator of ty is the following expansion estimator :

t̂y,π =
∑
i∈s

wiyi, (1)

where wi = 1/πi denotes the basic weight attached to unit i.

In the presence of unit nonresponse, the survey variables are recorded for a subset Sr of the
original sample S. This subset is often referred to as the set of respondents. Let ri be a response
indicator such that ri = 1 if unit i is a respondent and ri = 0, otherwise. We assume that the
true probability of response associated with unit i is related to a certain vector of variables xi ;
that is, pi = P (ri = 1 | S,xi). We assume that 0 < pi ≤ 1 and that the response indicators are
mutually independent. The latter assumption is generally not realistic in the context of multis-
tage sampling designs because sample units within the same cluster (e.g., household) may not
respond independently of one another ; see Skinner and D'Arrigo (2011) and Kim et al. (2016) for
a discussion of estimation procedures accounting for the possible intra-cluster correlation. If the
vector xi contains fully observed variables only, then the data are said to be Missing At Random
(MAR). However, if the vector xi includes variables that are subject to missingness, then the
data are Not Missing At Random (NMAR) ; see Rubin (1976). In practice, it is not possible to
determine whether or not the MAR assumption holds. However, the MAR assumption can be
made more plausible by conditioning on fully observed variables that are related to both the
probability of response and the survey variables ; e.g., Little and Vartivarian (2005).

If the response probabilities pi were known, an unbiased estimator of ty would be the double
expansion estimator (Särndal et al., 1992) :

t̂y,DE =
∑
i∈Sr

wi
pi
yi. (2)

In practice, the response probabilities pi are not known and need to be estimated. To that end, a
model for the response indicators ri, called a nonresponse model, is assumed and the estimated
probabilities p̂i are obtained using the assumed model (e.g., Särndal and Swensson, 1987 ; Ekholm
and Laaksonen, 1991). This leads to the Propensity Score Adjusted (PSA) estimator :

t̂y,PSA =
∑
i∈Sr

wi
p̂i
yi, (3)

where p̂i is an estimate of pi. An alternative estimator of ty is the so-called Hajek estimator :

t̂y,HAJ =
N

N̂

∑
i∈Sr

wi
p̂i
yi, (4)

where N̂ =
∑

i∈Sr

wi
p̂i

is an estimate of the population size N based on the respondents.

The estimated response probabilities in (3) or (4) may be obtained through parametric or
nonparametric methods. In the context of parametric estimation, we assume that

pi = f(xi,α), (5)
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for some function f(xi, .), where α is a vector of unknown parameters. The estimated response
probabilities are given by

p̂i = f(xi, α̂),

where α̂ is a suitable estimator (e.g., maximum likelihood estimator) of α. The class of parametric
models (5) includes the popular linear logistic regression model as a special case. It is given by

pi =
exp(x>i α)

1 + exp(1 + x>i α)
.

There are several issues associated with the use of a parametric model : (i) they are not robust
to the misspeci�cation of the form of f(xi, .) ; (ii) they can fail to account properly on local vio-
lations of the parametric assumption such as nonlinearities or interaction e�ects, both of which
may not have been detected during model selection ; (iii) they may yield very small estimated
response probabilities, resulting in very large nonresponse adjustment factors p̂−1i , ultimately lea-
ding to potentially unstable estimates ; e.g., Little and Vartivarian (2005) and Beaumont (2005).

In practice, nonparametric methods are usually preferred essentially because, unlike para-
metric methods, they protect against the misspeci�cation of the nonresponse model. The class
of nonparametric methods include kernel regression (Giommi, 1984 and Da Silva and Opsomer,
2006), local polynomial regression (Da Silva and Opsomer, 2009), weighting classes formed on the
basis of preliminary estimated response probabilities (Little, 1986 ; Eltinge and Yansaneh, 1997
and Haziza and Beaumont, 2007), the CHi square Automatic Interaction Detection (CHAID)
algorithm (Kass, 1980) and regression trees (Phipps and Toth, 2012).

In this work, we conduct an extensive simulation study to compare several methods for
estimating the response probabilities in a �nite population setting. For each method, we assess
the performance of the propensity score estimator (3) and the Hajek estimator (4) in terms
of relative bias and relative e�ciency. In our study, we attempted to cover a wide range of
(parametric and nonparametric) methods ; see Hastie et al. (2009) for a comprehensive overview
of machine learning methods.

2 Nonresponse modeling

Estimating the response probabilities is typically a supervised classi�cation issue, in which
the response variable is the two-class categorical response indicator r. However, whereas machine
learning methods designed to address classi�cation issues usually focus on optimizing prediction
performance, we will less ambitiously restrict our attention to the estimation of the posterior
class probabilities. For that issue, in some of the statistical learning methods presented below in
the present section, it will be considered as a regression issue in which r = 0, 1 is treated as a
numeric variable.

2.1 Nonparametric Discriminant analysis

Linear logistic regression is often compared to two-class Linear Discriminant Analysis (LDA)
since they can both be thought of as di�erent estimations of the same logit-linear regression
model, either using maximum-likelihood for linear logistic regression or moment estimation for
LDA. LDA originally relies on the assumption that the within-class distributions of the pro�le
x of explanatory variable is normal with equal variance matrices. Extending LDA to the case of
di�erent within-class variance matrices leads to the Quadratic Discriminant Analysis (QDA, see
McLachlan 2005). More generally, if fr(.) stands for the density function of the distribution of x
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with class r, for r = 0, 1, then it is deduced from Bayes' rule that :

pi =
f1(xi)P (ri = 1)

f(xi)
,

where f(x) = (1−P (ri = 1))f0(x)+P (ri = 1)f1(xi) is the density function of the two-component
mixture model with mixing coe�cients 1− P (ri = 1) and P (ri = 1).

In a classi�cation perspective, once the within-class distributions are estimated, the predicted
class is 1 if the corresponding estimation of pi exceeds a threshold which is chosen to guaran-
tee a low misclassi�cation rate or a good compromise between true positive and true negative
rates. Nonparametric discriminant analysis relies on a nonparametric estimation of group-speci�c
probability densities. Either a kernel method or the k-nearest-neighbor method can be used to
generate those nonparametric density estimates. Kernel density estimators were �rst introduced
in the scienti�c literature for univariate data in the 1950s and 1960s (Rosenblatt 1956, Parzen
1962) and multivariate kernel density estimation appeared in the 1990s (Simono� 1996). We used
a kernel density estimation procedure with normal kernel function, which is the most widely used
due to its convenient mathematical properties.

Kr(xi) =
1

(2π)J/2dJ |Vr|1/2
exp(− 1

2d2
xi
>V −1r xi)

where J is the number of explanatory variables, d is a �xed radius and Vk the within-group
covariance matrix of group r, for r = 0 or 1.

2.2 Classi�cation and Regression Tree (CART)

Unlike scoring methods such as logistic regression or discriminant analysis that provide a
global decision rule in the range of data, decision trees are designed to search for subgroups of data
for which the prediction rule is locally adapted. The CART decision tree (Breiman et al., 1984)
achieves this partitioning of the data using a binary recursive algorithm : each split of the learning
sample is de�ned by a binary rule, consisting either in thresholding a quantitative variable or
forming two sets of levels of a categorical variable. Decision trees have become very popular
in machine learning issues because they can handle both continuous and nominal attributes as
targets and predictors.

Once a criterion has been chosen to measure the so-called purity of a group of data, the whole
learning dataset, viewed as the root of the decision tree, is optimally split into two children nodes
(left and right), so that the sum of the purity indices of the two subgroups is as large as possible.
Each of the children node is in turn split following the same goal ... and so on until no further
splits are possible due to lack of data. The tree is grown to a maximal size and then pruned
back to the root with the method of cost-complexity pruning. Indeed, (Breiman et al., 1984)
show that pruning the largest optimal tree produces optimal subtrees of smaller size. Simple or
cross-validation assessment of the predictive performance can be used to determine the right size
for the decision tree. In order to be able to estimate class probabilities, we choose hereafter to
consider r = 0, 1 as a numeric variable (which in fact sums up to the use of the Gini index as the
impurity measure associated with a unit misclassi�cation cost matrix, see Nakache and Confais,
2003).

Splitting criteria

For each node t which is not terminal, splitting t in two children nodes tleft and tright is based
on a binary classi�cation rule involving one of the explanatory variables. For each explanatory
variable, say x, the binary rule depends on the nature, categorical or numeric, of x. In the case
x is nominal, the binary rule just consists in dividing the node t by choosing a group of x levels
for tleft and the remaining x levels for tright. In the case x is numeric or ordinal, the binary rule
consists in a thresholding of x : if the value of x for a given item exceeds a threshold s, then
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the item goes to tleft, otherwise it goes to tright. The best split is obtained by an exhaustive
screening of the variables, and for each variable, by optimization of the binary decision rule. For
example, if x is numeric, the optimal choice of the threshold s is achieved by minimizing the sum
of within-children nodes sum-of-squared deviations to the mean :∑

xi<s

(ri − r̄tleft)
2 +

∑
xi≥s

(ri − r̄tright)
2

Finally, applying the sequence of recursive binary splitting rules to an item based on its values of
the explanatory variables assigns this item to one of the terminal node, say t. The corresponding
estimated probability that r = 1 is just the proportion r̄t of respondents in t.

Pruning

Consistently with the above splitting algorithm, if T stands for the set of terminal nodes of a
tree T , then the goodness-of-�t of T can be measured by sum-of-squared di�erences between the
observed and �tted values, namely C(T ) =

∑
t∈T (ri− r̄t)2. The largest possible tree obtained by

applying the recursive binary splitting rules until no further split is possible minimizes C(T ). This
largest tree may over�t the data, which can be detrimental to its prediction performance. The-
refore, it is recommended to prune the tree by minimizing the following goodness-of-�t criterion,
penalized by the so-called size |T | of the tree, namely the number of its terminal nodes :

Cα(T ) =
∑
t∈T

(ri − r̄t)2 + α|T |

where α > 0 is a penalty parameter.
For a given value of α, minimizing Cα(T ) results in a unique smallest subtree Tα ⊆ T0.

Consistently, progressively elevating α produces a sequence of subtrees T0 ⊇ T1 ⊇ ... ⊇ TL = t0,
where t0 is the complete set of items in the sample. The penalty parameter α is usually obtained
by minimization of a cross-validated evaluation of the penalized goodness-of-�t criterion for all
the subtrees in the sequence or, as suggested in Breiman et al.. (1984) to get more stable results,
by taking the subtree which cost is one standard-error above the minimal cost.

Surrogate splits CART handles missing data among regressors with surrogate splits. Breiman
proposes to de�ne a measure of similarity between the best split of any node t and any other
possible split of t built with a regressor taht is not involved in the best split de�nition. Surrogate
splits are computed by searching for splits leading approximately to the same partition of the
observations as the original best split.

In section 3.1, we will see that this way of choosing the optimal tree by pruning is not
appropriate for our �nal purpose of estimating totals on variables of interest that are subject to
missingness.

2.3 Conditional Inference Trees for simple and multitarget deci-
sion problems

Due to its exhaustive search algorithm for the optimal splitting rules, the above recursive par-
titioning algorithm has several drawbacks among which over�tting (if not pruned) and selection
bias towards covariates with many possible splits. Conditional Inference Trees (Ctree, Hothorn
et al. 2006) are designed to overcome those two drawbacks by improving the search of the best
splitting rules using conditional inference procedures and permutation tests (see Strasser and
Weber, 1999).

According to Hothorn et al. (2006), conditional inference trees keep the same �exibility as
the original tree methods, since they can be applied to di�erent kinds of decision problems,
"including nominal, ordinal, numeric, censored as well as multivariate response variables

and arbitrary measurement scales of the covariates".
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Let us assume that, based on a model for the conditional distribution of the response indicator
r given a J−vector of explanatory variables x = (x1, ..., xJ)>, test statistics can be derived for
the signi�cance of the relationship between the response and each of the explanatory variable.
As for the standard tree method presented above, the Ctree algorithm to de�ne the optimal
splitting rule of a non-terminal node can be divided in two steps :

1. Variable selection : signi�cance of the relationship between the response and each of the
explanatory variables is tested, based on random permutations of the response values to
obtain a nonparametric estimate of the null distribution of the test statistics. A multiple
testing procedure controlling the Family-Wise Error Rate (FWER), such as the Bonferroni
correction of the p-values, is then implemented for testing the global null hypothesis H0 of
independence between any of the covariates xj and the response indicator r. The algorithm
is stopped if H0 cannot be rejected at a pre-speci�ed FWER control level α. Otherwise the
covariate xj∗ with the strongest association to r is selected.

2. Optimal split : the best split point for xj∗ is also chosen using permutation tests for the
signi�cance of the di�erence between the response rates in the two children nodes.

In the above algorithm, the FWER control level α turns out to be the key parameter to
determine the size of the �nal tree.

Predictions

As with CART, in each cell t which is a terminal node, p̂i = r̄t.
Missing values in regressors

CTree, as well as CART, handles missing data among regressors which is not the case with
logistic regression. Surrogates splits are computed by searching for splits leading approximately
to the same partition of the observations as the original best split.

2.4 Iterated Multivariate decision trees

Conditional inference trees, introduced in subsection 2.3, can also produce decisions rules
with several targets at once (see De'ath G 2002 and 2014). Thus, they enable us to provide
groups of items that can be homogeneous regarding a Q−vector of target variables
y = (y1, . . . , yQ)′ and the response indicator r. This could be related with the concept of
doubly robustness (Bang and Robins 2005, Haziza and Rao 2006).

In the present item nonresponse context, where all the target variables y1, ..., yQ are missing
for an item with the target r = 0, we propose to implement iteratively MultiVariate CTrees.
This procedure can be viewed as an estimation method of pi, i = 1...n based on successive

steps of simultaneous y imputation.

1. In the �rst step, the training sample of the multivariate Ctree is based on the sample of
respondents only Sr. The targets are y and the response indicator r. The predictors are
J covariates x1, ..., xJ . In case of missing values among the covariates then surrogate rules
can be used. Applying on the nonrespondents sample Snr this �rst decision tree built on
Sr, we get ŷ for non respondents sample Snr.

2. In the second step, the training sample of multivariate Ctree contains all items (respon-
dents and nonrespondents) with observed values of y for respondents and imputed values
(from step one) for nonrespondents. We still use the observed values of the response in-
dicator (not those predicted in step 1) to get new values ŷ for non respondents sample Snr.

3. Step 2 is repeated iteratively until ŷ is stabilized. In our simulation study (section 4), few
iterations have been necessary (less than ten). The �nal output is the n-vector of estimated
response probabilities p̂i's, i = 1...n for each sample item, provided at the last iteration of
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multivariate Ctree as the response rate in the terminal node of each item.

This iterated method deals with di�erent patterns of missingness : item nonresponse with
imputation of y, unit nonresponse with estimation of response probability and nonresponse
among regressors with surrogates rules. It highlights the fact that missingness can be seen as a
multivariate problem.

2.5 Bagging and Random Forests

Bootstrap aggregating, also called Bagging "is a method for generating multiple versions of
a predictor and using these to get an aggregated predictor. The aggregation averages over the
versions when predicting a numerical outcome and does a plurality vote when predicting a class."
(Breiman 1996).

This machine learning ensemble meta-algorithm is especially bene�cial to the notoriously
unstable decision tree methods. It is a special case of the model averaging approach, which aim
is both to avoid over�tting and to improve the reproducibility and accuracy of machine learning
algorithms.

In a general regression problem, bagging averages predictions over a set of bootstrap samples,
thereby reducing the variance of a base estimator (e.g., a decision tree). For each bootstrap sample
Sb, b = 1, 2, ..., B, drawn in the whole learning sample Sn, a model is �tted with a base estimator,
giving prediction f̂b(x). The bagging estimate of the response probability pi, i ∈ Sn is de�ned by

p̂i = f̂bag(xi) =
1

B

B∑
b=1

f̂b(xi)

Bagging takes advantage of the independence between base learners �tted on di�erent boots-
trap samples to reduce the estimation variance while keeping the bias unchanged. It performs
best with strong and complex models (e.g., fully developed decision trees), in contrast with boos-
ting methods (see next subsection) that usually work best with weak models (e.g., small decision
trees).

Random Forest (Breiman, 2001) is an extension of Bagging applied to regression and clas-
si�cation tree methods, where the main di�erence with standard Bagging is the randomized
covariate selection. Indeed, to optimize each splitting rule, the Random Forest method �rst ran-
domly selects a subset of covariates, and then apply the usual split selection procedure within the
subset of selected covariates. The former additional randomized feature selection is meant to lead
to more independent base learners leading to a more e�cient variance reduction, in comparison
with Bagging. The Random Forest method usually has a worse starting point (when b = 1) than
Bagging but converges to lower test errors as B increases (Zhou, 2012).

Note that we have chosen to aggregate within a family of learning algorithm, both in Bagging
and Random Forest, and not in an overall perspective mixing di�erent families - unlike in stacking
(Wolpert 1992, Breiman 1996, Nocairi et al. 2016).

2.6 Gradient Boosting and Stochastic Gradient Boosting

Similarly as in the Bagging methods, Boosting aims at taking advantage of a set of classi�-
cation methods, named learners, to improve the overall classi�cation performance. The original
learners are assumed to be just slightly better than random guessing : for this reason, we talk
about weak learners. The basic principle of Boosting is to iteratively derive a performant classi�-
cation rule by selecting a weak learner at each iteration and combine it with the learner derived
at the preceding step in such a way that the items with largest prediction errors are especially
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targeted by the current update of the boosted learner. Boosting was �rst proposed in the com-
putational learning theory literature (Shapire 1990, Freund 1995, Freund and Shapire 1997) and
rapidly became popular since it can result in dramatic improvements in performance.

Friedman et al. (2000) give a more statistical perspective to boosting by using the principles
of additive modeling and maximum likelihood. Hastie et al. (2009) argued that decision trees are
ideal base learners for applications of boosting. This motivates our choice of boosting decision
trees in our study.

One of the most famous family of boosting methods is Adapative Boosting (AdaBoost, Freund
and Shapire, 1996). Hereafter, we present a variant of Adaboost, named Real Adaboost (Freund
and Shapire 1996, Schapire and Singer 1999, Friedman et al. 2000), especially suited to the
present purpose of estimating response probabilities rather than predicting the membership to
the group of respondents. Indeed, at each iteration b, b = 1, ...B, the Real AdaBoost algorithm
uses weighted class probability estimates p̂b(x) to build real-value contributions fb(x) to the
�nal aggregated rule F (x), i.e. to update the additive model. In the following, the base learners

h
(b)
γ : x 7→ h

(b)
γ (x) = ±1 (+ 1 for respondents and -1 for non-respondents) are B decision trees

with a number γ of terminal nodes.

Real AdaBoost

Input : Learning sample Sn,

Base learning algorithms h
(b)
γ

Number of iterations B,
Process :

1 : Initialize the boosted estimator F (0)(x) = 0 and weights w
(0)
i = 1

n , i ∈ Sn
2 : For b = 1 to B do

a : Fit ĥ
(b)
γ with the target r̃i (where r̃i = 1 if ri = 1 and r̃i = −1 if r = 0)

on the weighted items in the training samples, using weights w
(b)
i ,

in order to obtain class probability estimates p̂b(xi)
c : Update

· w(b+1)
i = w

(b)
i exp{−r̃ifb(xi)}, i ∈ Sn, with fb(xi) = 0.5 log{ p̂b(xi)

1−p̂b(xi)}
and renormalize so that

∑
i∈Sn

w
(b+1)
i = 1

· F̂ (b)(x) = F̂ (b+1)(x) + fb(x)
End for

Outputs :

· The classi�er sign[F̂ (B)(x)] estimates the label
· The estimated probability
p̂(r̃ = 1|x) = p̂(r = 1|x) = 1

1+exp(−2F̂ (B)(x))

In our study, the more sophisticated Gradient Boosting and Stochastic Gradient

Boosting versions (Friedman 2002, Culp et al. 2006) of Real AdaBoost are imple-

mented.

Gradient Boosting is a mix of gradient descent optimization and boosting. Both Boosting
and Gradient Boosting �t an additive model in a forward stage-wise manner. In each stage,
they both introduce a weak learner to compensate the shortcomings of previous weak learners.
However, Gradient Boosting especially focuses on the minimization of a loss function, here the
exponential loss function derived from the maximum-likelihood estimation of a logistic regression
model, by identifying those "shortcomings" using gradients, instead of the AdaBoost weighting
function : "Both high-weight data and gradients tells us how to improve the model", (Li 2016).
In addition, a regularization parameter is introduced to control at each iteration the weight of
the new learners in the current update of the boosted classi�cation method.
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The Stochastic Gradient boosting algorithm is referred to as a hybrid bagging and boosting
algorithm (Friedman 2002), in the sense that it combines advantages of the two procedures : at
each iteration, the new learner is not �tted on the whole learning sample but on a randomly
drawn subsample.

2.7 The Suppport vector Machine

Support Vector Machines (SVM) are among the most famous machine learning methods in the
statistical learning theory presented in Vapnik (1998). In the special case where the p-dimensional
space of data points (xi1, . . . , xip), where xij is the observation of the jth explanatory variable
on the ith sampling item, is fully separable into two subgroups, one with only respondents
and one with only non-respondents, using a linear combination of the explanatory variables,
then there exists two parallel hyperplanes separating the two subgoups, with maximal distance
between those two hyperplanes : this maximal distance is named an hard margin. The maximal-
margins hyperplanes contains data points that are called the support vectors. In this special case
of separable groups of respondents and non-respondents, the linear SVM classi�er consists of
considering the position of a data point with respect to the hyperplane that lies in the middle of
the maximal-margins hyperplanes to determine the class of an item.

In the general case where the space of data points (xi1, . . . , xip) is not fully separable, whatever
the hyperplane and the margin chosen to separate the two subgroups, any linear classi�cation
rule de�ned as in the fully separable case by the position with respect to a separating hyperplane
will result in misclassi�ed data points. A so-called hinge loss function, very similar to the deviance
loss function minimized in the maximum-likelihood estimation of a logistic regression model, is
introduced to measure the relevance of a linear classi�cation rule in-between the two maximal-
margin hyperplanes. For a given soft margin, �nding the optimal hyperplane can be stated as
minimizing the mean hinge loss over the learning sample, which is convex optimization issue.
The SVM solution �nally consists in choosing the best compromise between a low mean hinge
loss over the learning sample and a wide margin.

One of the reason why SVM has become so popular is that it can easily be extended to non-
linear classi�cation rule, using the so-called "kernel trick" (Schölkopf and Smola 2002). Indeed,
in the linear framework, both the mean hinge loss function and the squared inverse of the margin
size involve standard scalar products xi.xi′ of data points i and i

′. This standard scalar product
can be replaced by K(xi, xi′), where K is a symmetric positive de�nite kernel function (Hastie
et al., 2009), that is intentionally introduced to de�ne the similarity of two observations, after
a nonlinear transformation of the explanatory variables : to each choice of K corresponds a
nonlinear transformation ϕ such that K(xi, xi′) = ϕ(xi).ϕ(xi′). For example, the gaussian radial
kernel, that is used in the following because it is a "general-purpose kernel used when there is
no prior knowledge about the data" (Karatzoglou et al. 2006), is de�ned as follows :

K(xi,xi′) = exp(−γ
J∑
j=1

(xij − xi′j)2)

where γ is a positive constant.
It can be shown that the SVM classi�er can be expressed as the sign of a score function

f̂(x) which is straightforward deduced from the hinge loss function. Since we are more interes-
ted in estimating class probabilities than in predicting class labels, we use Platt's a posteriori
probabilities (see Platt, 2000) :

P̂ (r = 1|f̂(x)) =
1

1 + exp(Af̂(x) +B)

where A and B are estimated by minimizing the negative log-likelihood function.
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3 Modi�cations of "raw" probabilities estimations

3.1 Homogeneous Response Groups (HRG)

The di�erent methods listed above produce "raw" estimated probabilities. The survey weights
may be then adjusted inversely to those raw estimated response probabilities. But in order to
protect against model insu�ciency, it is suggested that homogeneous response groups be formed,
i.e. that units with the same characteristics and the same propensity to respond be grouped
together (Eltinge and Yansaneh, 1997, Haziza and Beaumont, 2007, Little, 1986). That is why we
computed, for each set of "raw" estimated probabilities, a corresponding Homogeneous Response
Groups (HRG) version.

De�ning HRG requires to partition the population into C groups. The design weight of
respondents in group c is adjusted by multiplying it by the inverse of the observed response rate
in class c, for c = 1 to C. Homogeneous groups are formed by using a clustering algorithm (k-
means) on "raw" estimated probabilities. Finally, the probability of a unit in class c is estimated
by the response rate observed in the same class.

Example of HRG's usefulness with CART :

CART pruning consists in selecting a tree minimizing a cross-validated error (see section ??).
Therefore, the way the learning method is optimized is not especially designed to match our �nal
aim which is to minimize the following expected estimation error :

E(ty − t̂y)2

Therefore, in the following simulation study, we propose to extract clusters of homogeneous
estimated response probabilities calculated using unpruned trees.

Let us take as example, the variable of interest Y1 and response mechanism R0 described
bellow in the simulation study section 4. With this example, we measure a bias of 11% for the
expansion estimation t̂yExp of ty in our simulation study with a default pruned CART leading to

6 splits but no bias with an unpruned tree (see �gure 1 below). Furthermore, the SSE of t̂yExp
is much lower with 40 splits than with 6 splits.

3.2 Truncation of estimated probabilities

In order to prevent from too small weights, a lower bound has to be determined for the p̂i's.
In practice, the lower bound 0.02 is often used. However, some of our simulations show that the
choice of the lower bound may have a certain impact depending on the machine learning method
in use. For instance, in our simulations, the global performance of Ctree is robust to variations
of the truncation level, which is not the case with the Bagging version of Ctree (see appendix
6.3 for details).

4 Simulations study

4.1 Simulations set-up

We conduct an extensive simulation study to compare the di�erent methods described in
Section 2 in terms of bias and e�ciency. We perform K = 1000 iterations of the following
process : �rst, a �nite population of size N = 1500 is generated from a given model. Then, from
the realized population, we generate nonresponse according to a speci�c nonresponse mechanism.
Below, we describe one iteration in further details.
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Figure 1 � Performance of CART depending on the number of splits

We generate a �nite population of size N = 1500 consisting of ten survey variables, yj ,
j = 1, ..., 10 and �ve auxiliary variables x1-x5. First, the auxiliary variables were generated as
follows. The x1-values are generated from a standard normal distribution. The x2-values are
generated from a beta parameter with shape parameter equal to 3 and scale parameter equal
to 1. The x3-values are generated from a gamma distribution with shape parameter equal to 3
and scale parameter equal to 2. The x4-values are generated from a Bernoulli distribution with
probability equal to 0.7. Finally, the x5-values are generated from a multinomial distribution with
probabilities (0.4, 0.3, 0.3). We standardize x2 and x3 so that their means equal zero and their
variances equal one : without loss of generality, it allows us to have more readable coe�cients in
the de�nition of the models M1 to M10 and of response mechanisms R0 to R6 provided bellow.

Given the values of x1 to x5, the values of y1-y10 were generated according to the following
models :

M1 : yi1 = 2 + 2xi1 + xi2 + 3xi3 + εi1 ;

M2 : yi2 = 2 + 2xi1 + xi2 + 3xi3 + εi2 ;

M3 : yi3 = 2 + 2xi4 + 1.5 1(xi5=1) − 2 1(xi5=2) + εi3 ;

M4 : yi4 = 2 + 2xi1 + xi2 + 3xi3 + 2xi4 + 1.5 1(xi5=1) − 2 1(xi5=2) + εi4 ;

M5 : yi5 = 2 + 2xi1 + xi2 + 3xi3xi4 + 1.5 1(xi5=1) − 2 1(xi5=2) + εi5 ;

M6 : yi6 = 2 + 2xi1 + x2i2 + 3xi3 + εi6 ;

M7 : yi7 = 2 + 2x3i1 + x2i2 + 3xi3xi4 + 1.5 1(xi5=1) − 2 1(xi5=2) + εi7 ;

M8 : yi8 = 1 + exp(2xi1 + xi2 + 3xi3) + εi8 ;

M9 : yi9 = 1 + xi4exp(2xi1 + xi2 + 3xi3) + εi9 ;

M10 : yi10 = 1 + 4cos(xi1) + εi10.

As a �rst step away from our simplest linear model M1, for y2 we only modify the errors :
they are generated from a mixture of a standard normal distribution and a beta distribution with
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shape parameter equal to 3 and scale parameter equal to 1. For the other variables y3, ...y10, the
models are more complicated in terms of relations between variables of interest and covariates
but the errors εji are generated from a standard normal distribution.

In order to focus on the nonresponse error, we consider the case of a census that is, n = N =
1500. In each population, response indicators are generated according to the following response
mechanisms. The response mechanism R0 is a logistic model and constitutes the reference model
in our empirical study. The other response mechanisms R1- R5 are expressed as the sum of p0
and di�erent terms that draw them away from the reference model. The response mechanism R6
is built as a regression tree decision rule.
In each population, seven sets of response indicators rid are generated independently from a
Bernoulli distribution with parameter pid (i.e. response probabilities), i = 1, · · · , N and d =
0, · · · , 6, which leads to seven sets of respondents.

R0 : pi0 = 1/[1 + exp{−0.4(6.5 + 2xi1 + 2xi2 + 2xi3 − xi4 + 1.5 1(xi5=1)

− 2 1(xi5=2) − xi3xi4)}] ;
R1 : pi1 = 0.65pi0 + 0.007x2i1 ;

R2 : pi2 = 0.5pi0 + 0.02− 0.01x3i2 ;

R3 : Pi3 = 0.5pi0 + 0.1|xi1| ;
R4 : pi4 = 0.5pi0 + 0.01 + exp(xi2) ;

R5 : pi5 = 0.5pi0 + 0.2 + 0.1{(sin(xi1) + cos(xi2)} ;
R6 : pi6 = 1(xi1<0)(0.4 + 0.2xi4) +

1(xi1≥0)1(xi2<0.75)1(xi3<6){0.51(xi5=1) + 0.651(xi5=2) + 0.71(xi5=3)}
+ 0.81(xi1≥0)1(xi2<0.75)1(xi3≥6) + 0.91(xi1≥0)1(xi2≥0.75) ;

Figures presented in Appendix 6.1 show the distributions of the simulated values of response
probabilities pid, d = 0, · · · , 6. Note that the resulting response rates are approximately 85% for
R0, 56% for R1, 45% for R2, 51% for R3, 58% for R4, 69% for R5 and 61% for R6. Figures
presented in Appendix 6.2 illustrate the possibility of non linear links between the response
probabilities and the survey variables in our simulations : Hajek's estimator is expected to out-
perform the expansion estimator in such situations.

We use a truncation for p̂i with a 0.02 lower bound for all the methods (with or without
HRG). As a measure of bias of an estimator t̂y(m)

of the �nite population parameter ty, using
machine learning method m for response probabilities estimations, we compute the Monte Carlo
percent relative bias

RBMC(t̂y(m)
) =

1

K

K∑
k=1

(t̂y(m,k)
− ty)

ty
× 100, (6)

where t̂y(m,k)
denotes the estimator of ty in the k-th sample obtained with machine learning

method m. As a measure of relative e�ciency, we compute

REMC(t̂y(m)
) =

MSEMC(t̂y(m)
)

MSEMC(t̂y(HRG Reglog)
)
, (7)

where t̂y(m)
and t̂y(HRG Reglog)

denote respectively the estimator of ty obtained with method m
and the estimator of ty obtained with Homogenous Response Group applied to logistic regression
estimated probabilities, and where

MSEMC(t̂y(m)
) =

1

K

K∑
k=1

(t̂y(m,k)
− ty)2.
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Using RBMC(t̂y(m)
) and REMC(t̂y(m)

) as measures of performance leads to a huge amounts
of indicators. Indeed, we have to cross 7 response mechanisms, by 10 variables of interest, 30
methods (with and without HRG versions of 15 machine learning methods) and this for 2 types of
estimators t̂yExp and t̂yHaj : 42000 performance indicators. We have to sum up all this information.

In order to get a global ranking of the 30 methods for t̂yExp and t̂yHaj , we build two kind of global
indicators : one to sum up the RBMC tables and one to sum up the REMC tables of each machine
learning method.

4.2 Relative Bias results

Global indicator of relative bias

For each machine learning method, we have a RBMC table containing 70 indicators (10
rows for the 10 variables of interest and 7 columns for the 7 response mechanisms) that can be
summed up by one indicator : the Frobenius norm of the RBMC table. The de�nition of
the Frobenius norm of a matrix T is ‖T‖F =

√
trace(T ∗T ) where T ∗ is the conjugate transpose

of T . We want to identify the methods with the lowest relative bias. Thus we look for the methods
for which the Frobenius norm of relative bias tables are the smallest. Once we get the global
ranking of the methods based on this norm, we can go into more details for the best methods.

Global ranking results

In terms of relative bias results summed up with ‖RBMC‖F (�gure 2), the best method is
HRG logistic regression for both t̂yExp and t̂yHaj . However, among the methods that could handle
missing values in predictors, HRG unpruned CART is good and performs better than unpruned
CART (and much better than default pruned CART and than HRG prunned CART). Bagging
Ctree (which also could handle missing values in predictors) performs also quite good but better
for t̂yHaj than for t̂yExp . As shown in �gure 2, the four best methods for t̂yExp provide lower bias

than the four best for t̂yHaj . We also can see that applying HRG reduces bias for the very best
methods (logistic regression and Unpruned CART) but it is not the case for all the methods (see
for instance Bagging Ctree and MultiVariate CTrees). Note that in �gure 2, the most extreme
values have been removed for a better readability : only the 25 best methods (among 30) are
provided.
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a. RBMC : Focus on the three best methods for t̂yExp

a.1 HRG logistic regression (Table 1, Frobenious norm = 22.5)

Among the 70 scenarios, 30 show unbiased t̂yExp (bias < 1%) and 9 scenarios exhibit bias
above 4%. The best results occur with R0 (reference response mechanism i.e. logit link)
and R6 (decision tree response mechanism). The worse results occur with R2 (reference
response mechanism + a quadratic term) and R4 (reference response mechanism + an
exponential term). The highest bias equals −7.7 with Y 7 (model with quadratic, cubic
and interaction terms) and R5 (reference response mechanism + sine and cosine terms).

a.2 HRG Unpruned CART (Table 2, Frobenious norm = 26.36)

Among the 70 scenarios, 17 show unbiased t̂yExp (bias < 1%) and 13 scenarios exhibit bias
above 4%. The best results occur with R0 (reference response mechanism i.e. logit link)
and R6 (decision tree response mechanism). The worse results occur with R2 (reference
response mechanism + a quadratic term) and R3 (reference response mechanism + an
absolute value term). The highest bias equal −8.49% with Y 10 and R2 (reference response
mechanism + a quadratic term) and −7.22% with Y 10 (model with a cosine term) and
R3 (reference response mechanism + an absolute value term).

a.3 Logistic (Table 3, Frobenious norm = 27.62)

Among the 70 scenarios, 27 show unbiased t̂yExp (bias < 1%) and 14 scenarios exhibit bias
above 4%. The best results occur with R0 (reference response mechanism i.e. logit link)
and R6 (decision tree response mechanism). The worse results occur with R2 (reference
response mechanism + a quadratic term) and R4 (reference response mechanism + an
exponential term). The highest relative bias equals 9.28% with Y 7 (model quadratic, cubic
and interaction terms) and R4 (reference response mechanism + an exponential term).
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Table 1 � Relative bias of t̂yExp with HRG after logistic regression

Variable R0 R1 R2 R3 R4 R5 R6

Y1 0.82 3.65 5.30 3.35 4.60 2.49 - 0.33

Y2 0.60 2.68 3.85 2.44 3.33 1.84 - 0.23

Y3 - 0.12 0.19 0.69 0.78 0.70 0.35 - 0.04

Y4 0.35 2.40 3.77 2.77 3.39 1.88 - 0.24

Y5 0.11 2.91 5.28 3.62 4.67 2.35 - 0.80

Y6 0.07 1.71 3.41 0.84 4.33 - 1.46 2.27

Y7 0.85 2.79 5.91 - 0.22 6.99 - 7.68 - 2.32

Y8 1.19 - 1.29 - 1.51 0.63 - 3.06 2.55 - 0.26

Y9 0.72 - 0.86 - 1.80 - 0.23 - 2.57 1.95 - 0.92

Y10 0.15 0.03 0.64 - 4.70 1.21 - 0.99 0.16

Table 2 � Relative bias of t̂yExp with HRG after unpruned CART

Variable R0 R1 R2 R3 R4 R5 R6

Y1 2.53 2.33 - 2.13 - 0.95 2.61 2.29 - 0.88

Y2 1.86 0.75 - 4 - 2.37 0.58 1.39 - 1.26

Y3 0.36 - 2.81 - 7.56 - 5.07 - 3.66 - 0.23 - 1.94

Y4 1.82 0.91 - 3.70 - 2.06 0.65 1.62 - 1.11

Y5 2.61 3.32 - 1.13 0.09 3.66 2.76 - 1.36

Y6 0.77 - 2.05 - 4.68 - 4.81 - 4.03 - 0.34 - 1.10

Y7 3.41 2.12 0.70 - 2.87 0.47 1.21 - 0.43

Y8 3.78 3.49 - 1.02 - 1.38 5.32 5.18 2.44

Y9 3.14 5.23 - 4.77 - 0.36 3.61 4.37 3.68

Y10 - 0.02 - 3.72 - 8.49 - 7.22 - 4.80 - 0.71 - 2.57

Table 3 � Relative bias of t̂yExp with Logistic regression

Variable R0 R1 R2 R3 R4 R5 R6

Y1 0.06 3.56 5.25 2.95 4.08 2.61 - 0.71

Y2 0.04 2.55 3.77 2.15 3.07 1.85 - 0.42

Y3 - 0.21 - 0.01 0.71 0.76 1.16 0.15 0.00

Y4 - 0.17 2.32 3.78 2.51 3.29 1.88 - 0.59

Y5 - 0.70 3.06 5.42 3.18 4.18 2.53 - 1.16

Y6 - 0.03 0.51 3.23 0.66 6.80 - 1.86 2.46

Y7 - 0.25 1.69 5.93 - 0.85 9.28 - 8.42 - 5.80

Y8 - 0.11 - 7.28 - 6.80 - 1.14 - 3.54 - 0.38 0.72

Y9 - 0.49 - 6.22 - 6.50 - 1.52 - 2.90 - 0.82 - 0.13

Y10 0.01 0.27 1.29 - 5.13 1.60 - 0.59 - 0.62
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b. RBMC : Focus on the three best methods for t̂yHaj

b.1 HRG logistic regression (Table 4, Frobenious norm = 22.5)

Among the 70 scenarios, 30 show unbiased t̂yExp (bias < 1%) and 9 scenarios exhibit bias
above 4%. The best results occur with R0 (reference response mechanism i.e. logit link)
and R6 (decision tree response mechanism). The worse results occur with R2 (reference
response mechanism + a quadratic term) and R4 (reference response mechanism + an
exponential term). The highest relative bias equals−7.68% with Y 7 (model with quadratic,
cubic and interaction terms) and R5 (reference response mechanism + sine and cosine
terms).

b.2 Logistic regression (Table 5, Frobenious norm = 27.36)

Among the 70 scenarios, 28 show unbiased t̂yExp (bias < 1%) and 12 scenarios exhibit bias
above 4%. The best results occur with R0 (reference response mechanism i.e. logit link).
The worse results occur with R2 (reference response mechanism + a quadratic term). The
highest relative bias equals 8.81% with Y 7 (model with quadratic, cubic and interaction
terms) and R4 (reference response mechanism + an exponential term).

b.3 Bagging Ctree (Table 6, Frobenious norm = 30.11)

Among the 70 scenarios, 23 show unbiased t̂yExp (bias < 1%) and 21 scenarios exhibit bias
above 4%. The best results occur with R0 (reference response mechanism i.e. logit link)
and R6 (decision tree response mechanism). The worse results occur with R2 (reference
response mechanism + a quadratic term). The highest relative bias equals −8.62% with
Y 10 (model with a cosine term) and R2 (reference response mechanism + a quadratic
term).
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Table 4 � Relative bias of t̂yHaj with HRG after logistic regression

Variable R0 R1 R2 R3 R4 R5 R6

Y1 0.82 3.65 5.30 3.35 4.60 2.49 -0.33

Y2 0.60 2.68 3.85 2.44 3.33 1.84 -0.23

Y3 -0.12 0.19 0.69 0.78 0.70 0.35 -0.04

Y4 0.35 2.40 3.77 2.77 3.39 1.88 -0.24

Y5 0.11 2.91 5.28 3.62 4.67 2.35 -0.80

Y6 0.07 1.71 3.41 0.84 4.33 -1.46 2.27

Y7 0.85 2.79 5.91 -0.22 6.99 -7.68 -2.32

Y8 1.19 -1.29 -1.51 0.63 -3.06 2.55 -0.26

Y9 0.72 -0.86 -1.80 -0.23 -2.57 1.95 -0.92

Y10 0.15 0.03 0.64 -4.70 1.21 -0.99 0.16

Table 5 � Relative bias of t̂yHaj with Logistic regression

Variable R0 R1 R2 R3 R4 R5 R6

Y1 0.08 3.85 5.33 2.93 3.64 2.85 -0.98

Y2 0.06 2.84 3.85 2.14 2.63 2.09 -0.70

Y3 -0.20 0.27 0.78 0.74 0.73 0.39 -0.28

Y4 -0.15 2.61 3.86 2.50 2.85 2.11 -0.87

Y5 -0.68 3.35 5.50 3.16 3.74 2.77 -1.43

Y6 -0.02 0.78 3.30 0.65 6.34 -1.64 2.18

Y7 -0.23 1.98 6.00 -0.87 8.81 -8.22 -6.06

Y8 -0.09 -7.02 -6.75 -1.16 -3.96 -0.15 0.44

Y9 -0.47 -5.96 -6.44 -1.55 -3.33 -0.59 -0.40

Y10 0.03 0.55 1.36 -5.15 1.17 -0.36 -0.90

Table 6 � Relative bias of t̂yHaj with Ctree Bagging

Variable R0 R1 R2 R3 R4 R5 R6

Y1 1.46 5.26 6.30 5.78 5.44 1.85 0.67

Y2 1.13 3.90 4.54 4.22 3.99 1.36 0.50

Y3 -0.05 0.73 0.81 0.89 0.97 0.59 -0.47

Y4 0.84 3.86 4.45 4.31 4.20 1.75 -0.13

Y5 0.16 5.16 6.39 6.20 5.81 2.03 -0.11

Y6 2.32 3.67 4.29 3.45 4.13 2.09 0.54

Y7 2.81 7.65 9.13 7.08 9.34 3.01 0.01

Y8 2.86 0.67 1.32 4.84 2.22 4.04 2.16

Y9 2.41 1.19 0.83 3.02 2.56 3.71 1.35

Y10 -0.88 -0.02 0.39 -3.02 0.38 0.03 -0.11
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4.3 Relative E�ciency results

Global indicator of relative e�ciency

In the de�nition of relative e�ciency REMC (equation 7), we explicitly use the logistic
regression combined with HRG as the reference method. It is not the case in the de�nition
of relative bias RBMC (equation 6). That is why we propose a di�erent global indicator of
performance, normalized to 1 for the logistic regression combined with HRG.

Let us denote REMC(e,m) the table computed for :
- e the estimator type of ty's, e ∈ {t̂yExp, t̂yHaj},
- m the machine learning method used to estimate response probabilities.

Note that the model m can either be a machine learning used alone to estimate probabilities
or a machine learning method associated to the Homogeneous Response Group creation (see
section 3.1).

We compute the following normalized indicator (based on the Frobenius norm) :

NREF(e,m) = ‖REMC(e,m)/REMC(e,HRG logistic regression)‖F /8.3666

where REMC(e,m)/REMC(e,HRG logistic regression) is a term by term division of REMC(e,m)
by REMC(e,HRG logistic regression). The denominator 8.3666 is the Frobenius norm of a 10×7
matrix �lled with 1′s : it is the Frobenius norm of the table

REMC(e,HRG logistic regression)/REMC(e,HRG logistic regression).

Global ranking results

In the Bar plot (Figure 3) the most extreme values of NREF have been removed for a
better readability. The best methods are HRG logistic regression, Logistic regression HRG Un-
pruned CART and Unpruned CART for both t̂yExp and t̂yHaj . However among the methods that
could handle missing values in predictors, MultiVariate CTree with four iterations is not far,
particularly for t̂yExp .
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a. REMC : Focus on the three best methods for t̂yExp

HRG logistic regression is a common used method and appears to the best rank among all the
machine learning methods we used. That is why we used it as the reference : data table 7 is used
as denominator in REMC computation for all the other methods. Consequently, it's REMC table
is �lled with 1's only which leads to a Frobenius norm equal to 3.87 and a Normalized Frobenius
norm equal to 1. Thus we rather provide here the MSEMC table. In the following table, we
darkened the worse cases for each variable of interest (the maximal value in each row). It shows
for each variable of interest, on which response mechanism HRG logistic regression performs the
best (always R0 i.e. the reference response mechanism with logit link)) and the worse (R2 i.e. the
reference response mechanism + a quadratic term for Y 1 to Y 5, R3 for Y 8 to Y 10 for instance).

Let us focus now on the two other best methods in terms of REMC .
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a.1 Logistic regression (Table 8, Normalized Frobenious norm = 1.2)

Among the 70 scenarios, Logistic regression outperforms HRG Logistic regression in 36
scenarios (REMC < 1) ) and is much worse in 3 scenarios with REMC > 2. The relative
best outperformances of Logistic regression occur with R1 (logit response mechanism with
non normal residuals) and R2 (reference response mechanism + a quadratic term). The
worse underperformances occur with Y 5 and R0 (reference response mechanism i.e. logit
link) : REMC = 3.41 which means that the MSE of Logistic regression is more than three
times the one of HRG Logistic regression.

a.2 HRG Unpruned CART (Table 9, Normalized Frobenius norm = 5.8)

Among the 70 scenarios, HRG Unpruned CART outperforms HRG Logistic regression in
18 scenarios (REMC < 1) and is much worse in 25 scenarios with a REMC higher than 2.
Relative underperformances occur with R0 to R6. The highest REMC equals 29.41 with
Y 10 and R2 (reference response mechanism + a quadratic term) and 20.69 with Y 3 and
R2.
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Table 7 � MSEMC for t̂yExp with HRG logistic regression

Variable R0 R1 R2 R3 R4 R5 R6

Y1 1.40E+03 2.14E+04 3.86E+04 2.30E+04 3.07E+04 1.12E+04 8.99E+03

Y2 1.42E+03 2.17E+04 3.94E+04 2.30E+04 3.02E+04 1.19E+04 8.98E+03

Y3 6.51E+02 4.14E+03 8.10E+03 6.62E+03 5.71E+03 3.27E+03 2.27E+03

Y4 1.33E+03 2.66E+04 5.33E+04 3.50E+04 4.27E+04 1.67E+04 9.75E+03

Y5 1.10E+03 1.70E+04 4.00E+04 2.59E+04 3.12E+04 1.10E+04 8.06E+03

Y6 2.72E+03 2.01E+04 4.05E+04 1.80E+04 5.16E+04 1.29E+04 2.15E+04

Y7 3.30E+04 9.16E+04 1.48E+05 1.01E+05 1.57E+05 1.79E+05 5.90E+04

Y8 1.96E+17 3.08E+20 3.94E+20 4.38E+20 2.04E+20 3.42E+19 1.79E+20

Y9 1.68E+17 2.83E+20 3.60E+20 4.23E+20 2.00E+20 3.27E+19 1.75E+20

Y10 1.54E+03 5.79E+03 7.11E+03 6.51E+04 9.55E+03 5.22E+03 4.11E+03

Table 8 � Relative e�ciency for t̂yExp with logistic regression

Variable R0 R1 R2 R3 R4 R5 R6

Y1 1.52 0.91 0.97 0.89 0.90 1.03 1.05

Y2 1.43 0.89 0.96 0.90 0.93 0.97 1.02

Y3 1.33 0.86 0.93 1.03 1.57 0.87 1.03

Y4 1.97 0.90 1.00 0.88 0.99 0.97 1.10

Y5 3.41 0.97 1.01 0.88 0.92 1.05 1.03

Y6 1.23 0.63 0.92 0.93 2.33 1.13 1.11

Y7 1.80 0.70 0.98 1.05 1.65 1.19 2.67

Y8 0.01 1.25 0.56 1.03 0.88 0.48 0.97

Y9 0.01 1.28 0.53 1.05 0.88 0.48 0.97

Y10 1.04 0.97 1.72 1.16 1.36 0.79 1.43

Table 9 � Relative e�ciency for t̂yExp with HRG after unpruned CART

Variable R0 R1 R2 R3 R4 R5 R6

Y1 7.02 1.05 0.70 0.95 0.90 1.51 2.27

Y2 7.23 0.85 1.30 1.35 0.72 1.31 2.73

Y3 3.30 8.12 20.69 12.52 8.86 3.17 10.67

Y4 10.16 0.89 1.25 1.16 0.65 1.36 3.16

Y5 9.40 1.70 0.65 0.88 1.15 1.92 2.57

Y6 3.09 1.74 1.80 3.98 1.27 1.60 1.25

Y7 2.20 1.52 1.00 1.06 0.89 0.66 2.11

Y8 0.08 0.09 0.57 1.84 1.89 1.97 0.63

Y9 0.05 0.02 0.53 1.88 1.72 2.04 0.63

Y10 1.56 8.78 29.41 2.37 8.00 1.87 7.87
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b. REMC : Focus on the three best methods for t̂yHaj

Here again, HRG logistic regression is used as the reference (denominator in REMC com-
putation). In the following table, we darkened the worse cases for each variable of interest (the
maximal value in each row). It shows that HRG logistic regression performs the best with R0
(reference response mechanism) and the worse with R2 (reference response mechanism + a qua-
dratic term) for Y 1 to Y 6, R3 for Y 8 to Y 10.

Let us focus now on the two other best methods in terms of REMC .

b.1 Logistic regression (Normalized Frobenius norm = 1.4)

Among the 70 scenarios, logistic regression outperforms HRG Logistic regression in 31
scenarios (REMC < 1) and is much worse in 5 scenarios with a REMC higher than 2. The
relative best outperformances occur with R2 (reference response mechanism + a quadratic
term) and the worse underperformances with R0 (reference response mechanism). The
highest REMC equals 4.57 with Y 5 and R0 (reference response mechanism).

b.2 HRG Unpruned CART (Normalized Frobenius norm = 2.9)

Among the 70 scenarios, HRG Unpruned CART outperforms HRG Logistic regression in
12 scenarios (REMC < 1) and is much worse in 42 scenarios with a REMC higher than 2.
The relative best outperformances occur with Y 8 and Y 9 and worse underperformances
occur with R0 (reference response mechanism). The highest REMC equals 10.37 with Y 5
and R0 (reference response mechanism).
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Table 10 � MSEMC for t̂yHaj with HRG logistic regression

Variable R0 R1 R2 R3 R4 R5 R6

Y1 1.40E+03 2.15E+04 3.86E+04 2.30E+04 3.08E+04 1.12E+04 9.00E+03

Y2 1.42E+03 2.17E+04 3.95E+04 2.30E+04 3.03E+04 1.19E+04 8.98E+03

Y3 6.52E+02 4.15E+03 8.11E+03 6.62E+03 5.72E+03 3.27E+03 2.28E+03

Y4 1.33E+03 2.66E+04 5.33E+04 3.50E+04 4.27E+04 1.67E+04 9.76E+03

Y5 1.10E+03 1.70E+04 4.00E+04 2.59E+04 3.13E+04 1.11E+04 8.07E+03

Y6 2.73E+03 2.02E+04 4.05E+04 1.80E+04 5.16E+04 1.29E+04 2.15E+04

Y7 3.30E+04 9.17E+04 1.49E+05 1.01E+05 1.58E+05 1.80E+05 5.90E+04

Y8 1.97E+17 3.08E+20 3.95E+20 4.39E+20 2.04E+20 3.43E+19 1.79E+20

Y9 1.68E+17 2.83E+20 3.60E+20 4.24E+20 2.00E+20 3.27E+19 1.75E+20

Y10 1.54E+03 5.80E+03 7.11E+03 6.51E+04 9.56E+03 5.22E+03 4.12E+03

Table 11 � Relative e�ciency of t̂yHaj with logistic regression

A R0 R1 R2 R3 R4 R5 R6

Y1 2.30 1.01 0.99 0.90 0.81 1.16 1.14

Y2 2.47 1.02 0.98 0.91 0.80 1.14 1.13

Y3 1.33 0.88 0.95 0.99 1.07 0.92 1.09

Y4 3.57 1.04 1.02 0.88 0.83 1.14 1.27

Y5 4.57 1.08 1.03 0.89 0.83 1.18 1.14

Y6 1.12 0.64 0.94 0.91 2.00 1.00 0.99

Y7 1.89 0.74 0.99 1.07 1.51 1.16 2.81

Y8 0.03 1.27 0.56 1.03 0.88 0.49 0.97

Y9 0.03 1.30 0.53 1.05 0.87 0.49 0.97

Y10 1.30 1.14 1.83 1.17 1.01 0.82 1.90

Table 12 � Relative e�ciency of t̂yHaj with HRG after unpruned CART

Variable R0 R1 R2 R3 R4 R5 R6

Y1 7.14 2.82 1.97 2.28 2.66 2.13 2.41

Y2 7.38 2.83 1.90 2.27 2.67 2.04 2.46

Y3 3.24 2.69 2.03 2.03 2.21 2.27 3.74

Y4 10.37 3.48 2.19 2.35 2.75 2.13 3.01

Y5 9.53 4.42 2.40 2.59 3.26 2.65 2.35

Y6 3.12 1.64 1.77 1.56 0.59 1.49 1.15

Y7 2.21 2.46 2.72 1.27 1.37 0.72 2.19

Y8 0.08 0.10 0.67 2.09 2.10 1.97 0.71

Y9 0.05 0.03 0.63 2.12 1.89 2.04 0.70

Y10 1.53 1.43 1.61 0.17 0.91 1.12 1.86
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5 Discussion

In this article, we conducted a comprehensive simulation study, aiming at a global ranking
of di�erent machine learning methods in totals ty estimation performance through response
probabilities estimation. In our simulation set-up with a census context, the best method in
terms of MSE is the logistic regression associated with Homogeneous Response Groups creation.
This is true both for the expansion estimator and for the Hajek estimator. One drawback of this
method is that it does'nt handle missing data among regressors. Unpruned CART associated with
Homogeneous Response Groups creation appear among the methods with good performance and
that could handle missing values among regressors, particularly with the expansion estimator.
Note that those two �rst methods turn out to be very robust against changes in lower bound
truncation of estimated probabilities. Bagging Ctree (which also could handle missing values
among regressors) outperforms Unpruned CART associated to Homogeneous Response Groups
creation with the Hajek estimator. However, it seems to require a higher level of truncation than
the usual 0.02 value.

In further researches, we would like to study deeper our proposed iterated version of multiva-
riate Ctree whose performances are quite good. For instance, which variables of interest pattern
makes the Iterated MultiVariate CTrees work or fail ? Furthermore, this method could maybe
prove useful in a context of imputation. Another interesting �eld would be evaluating the per-
formance of the di�erent machine learning methods with missing data among the regressors.
We could also enlarge the set of model aggregation with stacking for instance (Wolpert 1992,
Breiman 1996, Nocairi et al. 2016). And lastly, evaluating the methods with di�erent complex
sampling designs could bring useful information.

28



References

Agresti, A. (2013). Categorical Data Analysis. New York : Wiley-Interscience.

Bang, H., Robins, J. M. (2005). Doubly Robust Estimation in Missing Data and Causal Inference
Models. Biometrics, 61, 962�973.

Beaumont, J. F. (2005), Calibrated imputation in surveys under a quasi-model-assisted approach,
Journal of the Royal Statistical Society Series B (Statistical Methodology), 67(3), 445�458.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123�140.

Breiman, L. (1996). Stacked Regression, Machine Learning, 24(1), 49-64.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.

Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J. (1984). Classi�cation and regression

trees. Wadsworth & Brooks/Cole Advanced Books & Software.

Chang, T., Kott, P. (2008). Using Calibration Weighting to Adjust for Nonresponse under a
Plausible Model. Biometrika, 95(3), 555-571.

Cortes, C., Vapnik, V. (1995). Support-Vector networks. Machine Learning, 20, 273-297.

De'ath, G., (2002). Multivariate Regression Trees : A New Technique for Modeling Species-
Environment Relationships. Ecology, 83(4), 1105-1117.

De'ath G (2014). mvpart : Multivariate Partitioning. R package version 1.6-2,
URL http : //CRAN.R-project.org/package=mvpart.

Breiman, L. (1996). Bagging Predictors. Machine Learning, 24, 123-140

Cortes, C., Vapnik, V. (1995). Support-vector networks. Machine Learning. 20(3), 273-297.

Culp, M., Johnson, K., Michailidis, G. (2006). ada : An R Package for Stochastic Boosting.
Journal of Statistical Software, 17.

Da Silva, D.N., J.D. Opsomer (2006). A kernel smoothing method of adjusting for unit non-
response in sample surveys. The Canadian Journal of Statistics, 34, 563�579.

Da Silva, D.N., J.D. Opsomer (2009). Nonparametric propensity weighting for survey nonresponse
through local polynomial regression. Survey Methodology, 35, 165�176

Ekholm, A. and Laaksonen, S. (1991). Weighting via response modeling in the Finnish Household
Budget Survey. Journal of O�cial Statistics 3, 325-337.

Eltinge, J.L., Yansaneh, I.S. (1997). Diagnostics for formation of nonresponse adjustment cells,
with an application to income nonresponse in the U.S. consumer expenditure survey. Survey
Methodology, 23, 33�40

Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and computa-

tion, 121, 256-285.

Freund, Y., Schapire, R.E. (1996). Experiments with a new boosting algorithm. In Machine

Learning : Proceedings of the thirteenth International Conference, 148-156. Morgan Kaufman,
San Francisco.

Freund, Y., Schapire, R.E. (1997). A Decision-Theoretic Generalization of On-Line Learning and
an Application to Boosting. Journal of Computer and System Sciences, 55(1), 119-139

Friedman, J., Hastie, T., Tibshirani, R. (2000). Additive logistic regression : a statistical view of
Boosting. The annals of statistics, 28(2), 337-407.

Friedman, J. (2001). Greedy function approximation : a gradient boosting machine. Annals of
statistics, 1189-1232.

Friedman, J. (2002). Stochastic Gradient Boosting, Computational Statistics and Data Analysis,
38(4), 367-378.

29



Giommi, A.(1984). On the estimation of the probability of response in �nite population sampling
(Italian, Societa Italiana di Statistica, Atti della Riunione Scienti�ca della Societa Italiana,
32.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning : Data
Mining, Inference, and Prediction. Springer, second edition.

Haziza, D. (2009). Imputation and inference in the presence of missing data. Handbook of statis-
tics, 29, 215-246.

Haziza, D., Beaumont, J.F. (2007.) On the construction of imputation classes in surveys. Inter-
national Statistical Review, 75(1),25-43.

Haziza, D., Beaumont, J.F. (2017). Construction of weights in surveys : a review. Statistical
Science, 32, 206-226.

Haziza, D., Lesage, E. (2016). A discussion of weighting procedures for unit nonresponse. Journal
of O�cial Statistics, 32, 129-145.

Haziza, D. and Rao, J. N. K. (2006). A nonresponse model approach to inference under imputa-
tion for missing survey data. Survey Methodology, 32(4), 53-64.

Ho, T.K. (1995). Random Decision Forests. Proceedings of the 3rd International Conference on

Document Analysis and Recognition, Montreal, QC, 14-16, 278-282.

Hosmer, D.W., Lemeshow, S. (2000). Applied logistic regression. Wiley Series in Probability and
Mathematical Statistics.

Hothorn, T., Hornik, K., Zeileis, A. (2006). Unbiased Recursive Partitioning : A Conditional
Inference Framework. Journal of Computational and Graphical Statistics, 15(3), 651-674.

Geo�rey, J. McLachlan (2005). Discriminant Analysis and Statistical Pattern Recognition. Wiley.

Karatzoglou, A., Meyer, D., Hornik, K. (2006). Support Vector Machines in R. Journal of Sta-
tistical Software, 15(9).

Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical
data. Applied Statistics 29 (2), 119�127.

Kim, J. K., Kwon, Y., and Park, M. (2016). Calibrated propensity score method for survey
nonresponse in cluster sampling. Biometrika, 103 :461� 473.

Li, C. (2016). A Gentle Introduction to Gradient Boosting.
URL : http ://www.ccs.neu.edu/home/vip/teach/MLcourse/4_ boosting/slides/gradient_boosting.pdf.

Little, R.J.A. (1986). Survey Nonresponse Adjustments for Estimates of Means. International
Statistical Review, 54, 139�157.

Little R. J. A., Vartivarian S. (2005). Does weighting for nonresponse increase the variance of
survey means ? , Survey Methodology, 31, 161�168.

McLachlan (2005). Discriminant Analysis and Statistical Pattern Recognition, Wiley.

Nakache, J.P., Confais, J. (2003). Statistique explicative appliquée, Technip, 206-211.

Niculescu-Mizil, A., Caruana, R. (2005). Obtaining Calibrated Probabilities from Boosting. Un-
certainty in Arti�cial Intelligence.

Niculescu-Mizil, A., Caruana, R. (2005). Predicting Good Probabilities with Supervised Learning.
ICML.

Phipps, P., Toth, D. (2012). Analyzing establishment nonresponse using an interpretable regres-
sion tree model with linked administrative data. Annals of Applied Statistics, 6(2), 772-794.

Nocairi, H., Gomes, C., Thomas, M., Saporta, G. (2016) Improving Stacking Methodology for
Combining Classi�ers ; Applications to Cosmetic Industry. Electronic Journal of Applied Sta-

tistical Analysis, 9(2), 340-361.

30



Parzen, E. (1962). On estimation of a probability density function and mode. Annals of Mathe-

matical Statistics, 33, 1065�1076.

Platt, J. (2000). Probabilistic outputs for support vector machines and comparison to regulari-
zed likelihood methods. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans (Eds.),
Advances in large margin classi�ers. Cambridge : MIT Press.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. Annals
of Mathematical Statistics, 27, 832�837.

Rubin, D.B. (1976). Inference and Missing Data. Biometrika, 63, 581-590.

Särndal, C. E. and Swensson, B. (1987). A general view of estimation for two-phases of selection
with applications to two-phase sampling and non-response. International Statist. Review 55,
279- 294.

Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling. Springer-
Verlag.

Schapire, R.E. (1990). The Strength of Weak Learnability. Machine Learning, Boston, MA :
Kluwer Academic Publishers, 5 (2), 197-227.

Schapire, R.E., Singer, Y. (1999). Improved boosting algorithms using con�dence-rated predic-
tions. Machine learning, 37(3), 297-336.

Simono�, J.S. (1996). Smoothing Methods in Statistics. Springer.

Schölkopf B., Smola A. (2002). Learning with Kernels. MIT Press.

Strasser, H., Weber, C. (1999). On the Asymptotic Theory of Permutation Statistics. Mathema-

tical Methods of Statistics, 8, 220�250.

Skinner C. J., D'arrigo (2011). Inverse probability weighting for clustered nonresponse, Biome-
trika, 98, 953�966.

Vapnik, V. (1998). Statistical Learning Theory. Wiley.

Wolpert, D. (1992). Stacked Generalization. Neural Networks, 5, 41-259

Zadrozny, B., Elkan, C. (2001). Obtaining calibrated probability estimates from decision trees
and naive Bayesian classi�ers. ICML, 1, 609-616.

Zhou, Z.-H., (2012). Ensemble Methods : Foundations and Algorithms. Chapman & Hall/CRC.

31



6 Appendix

6.1 Distributions of the generated response probabilities

Distributions on the K ×N = 1000× 1500 units for the seven response mechanisms
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6.2 Plots between response probabilities (p0 to p6)
and variables of interest (Y 1 to Y 10)
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Figure 4 � Scatter plots of p0 and variables of interest
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Figure 5 � Scatter plots of p1 and variables of interest
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Figure 6 � Scatter plots of p2 and variables of interest
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Figure 7 � Scatter plots of p3 and variables of interest
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Figure 8 � Scatter plots of p4 and variables of interest
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Figure 9 � Scatter plots of p5 and variables of interest
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Figure 10 � Scatter plots of p6 and variables of interest

40



6.3 Impact of estimated probabilities' truncation

In order to avoid too small values for p̂i, the common practice is to implement truncation
with a lower bound t for p̂i's. A usually implemented lower bound is t = 0.02. We want to check
how much the choice of a di�erent value in t could change the �nal performance in terms of MSE
for t̂y built on di�erent machine learning methods. Let us denote TMSE(e,m,t) an MSE table
computed for :
- e the estimator type of ty's, e ∈ {t̂yExp, t̂yHaj},
- m the machine learning method used to estimate response probabilities,
- t the lower bound used for truncation.

Note that the model m can either be a machine learning used alone to estimate probabilities
or a machine learning method associated to the Homogeneous Response Group creation (see
section 3.1).

In our simulation study (see section 4), for each combination e×m× t, we have 70 indicators
of MSE for t̂y (10 variables of interest × 7 response mechanisms) - see for instance table 13.
Thus we need a global indicator to sum up the overall modi�cation of the 70 MSE's induced by a

change in t. The Frobenius norm ‖TMSE(e,m,t)‖F =
√
trace(TMSE∗(e,m,t)TMSE(e,m,t)) of the

TMSE(e,m,t)'s could provide this global measure of performance, and help evaluating the impact
of a change in t. Indeed, the lower the MSE's are, the better the combination e×m× t is. Thus,
given e and m, the best value for t is the one that provides the lowest ‖TMSE(e,m,t)‖F .

However, for an easier analysis of the results, we rather compute the following normalized
indicator (still based on the computation of a Frobenius norm) :

NF(e,m,t) = ‖TMSE(e,m,t)/TMSE(e,m,t=0.02)‖F /8.3666

where TMSE(e,m,t)/TMSE(e,m,t=0.02) is a term by term division of TMSE(e,m,t)

by TMSE(e,m,t=0.02). The reference value for t is 0.02. The denominator 8.3666 is the Frobe-
nius norm of a 10×7 matrix �lled with 1′s : it is the NF value in case of TMSE's global stability
when t=0.02 is replaced by an other value of t.
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For instance in table 14, we can examine in detail the 70 ratios of

TMSE(t̂yHaj , HRG after logistic regression, 0.06)/TMSE(t̂yHaj , HRG after logistic regression, 0.02)

In this example, a change in truncation bound from t=0.02 to 0.06 has very little impacts
(only 3 cases in bold font where the ratios are slightly di�erent from 1). The corresponding
indicator NF(t̂yHaj ,HRG after logistic regression, 0.06) is 1 (see table 16 ).

Table 14 � Ratios of TMSE with truncation 0.06 / TMSE with truncation 0.02
TMSE(t̂yHaj , HRG after logistic regression, 0.06)/TMSE(t̂yHaj , HRG after logistic regression, 0.02)

Variable R0 R1 R2 R3 R4 R5 R6

Y1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Y2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Y3 1.00 1.00 1.00 1.00 0.99 1.00 1.00
Y4 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Y5 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Y6 1.00 1.00 1.00 1.00 0.99 1.00 1.00
Y7 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Y8 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Y9 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Y10 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Let us focus on two of the best methods in terms of MSE's (see section 4.3). NF indi-
cators table 15 for t̂yExp and table 16 for t̂yHaj , show that HRG after logistic regression is
robust in terms of MSE : we can see that NF indicators are always equal to 1, with m =
HRG after logistic regression. HRG after Unpruned CART is quite robust but exhibits better
global performance in terms of MSE with t = 0.06 both for t̂yExp and for t̂yHaj .
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Table 15 � NF indicator for t̂yExp with di�erent lower bounds truncation of p̂i
Lower Lower Lower Lower

bound bound bound bound

Method 0.06 0.08 0.10 0.14

Logistic regression 0.99 0.98 0.97 0.97

Logistic regression Bagging 1.00 1.00 1.00 1.00

Logistic Random Forest 1.00 1.00 1.00 1.00

Quadratic nonparametric
discriminant analysis 1.00 1.00 1.00 1.00

Default pruned CART 1.00 1.00 1.00 1.00

Unpruned CART 1.00 1.01 1.05 1.05

CART Bagging 1.00 1.00 1.00 1.00

CART Random Forest 1.00 1.00 1.00 1.00

CART Boosting 1.02 1.11 1.27 1.27

CART Gradient Boosting 1.00 1.00 1.00 1.00

Ctree 1.00 1.00 1.00 1.00

Ctree Bagging 0.80 0.78 0.76 0.76

Ctree Random Forest 0.93 0.92 0.91 0.91

MultiVariate CTrees 1.00 1.00 1.00 1.00

Radial Kernel SVM 1.00 1.00 1.00 1.00

HRG after Logistic regression 1.00 1.00 1.00 1.00

HRG after Logistic regression Bagging 1.00 1.00 1.00 1.00

HRG after Logistic Random forest 1.00 1.00 1.00 1.00

HRG after Quadratic nonparametric
HRG after discriminant analysis 1.04 1.09 1.16 1.16

HRG after Default pruned CART 1.00 1.00 1.00 1.00

HRG after Unpruned CART 0.94 0.96 1.00 1.00

HRG after CART Bagging 1.00 1.00 1.00 1.00

HRG after CART Random Forest 1.00 1.00 1.00 1.00

HRG after CART Boosting 1.02 1.11 1.27 1.27

HRG after CART Gradient Boosting 1.01 1.08 1.17 1.17

HRG after Ctree 1.00 1.00 1.00 1.00

HRG after Ctree Bagging 1.00 1.00 1.00 1.00

HRG after Ctree random Forest 1.00 1.00 1.00 1.00

HRG after MultiVariate CTrees 1.00 1.00 1.00 1.00

HRG after SVM 1.00 1.00 1.00 1.00
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Table 16 � NF indicator for t̂yHaj with di�erent lower bounds truncation of p̂i
Lower Lower Lower Lower

bound bound bound bound

Method 0.06 0.08 0.10 0.14

Logistic regression 0.98 0.97 0.96 0.97

Logistic regression Bagging 1.00 1.00 1.00 1.00

Logistic Random Forest 1.00 1.00 1.00 1.00

Quadratic nonparametric
discriminant analysis 1.00 1.00 1.00 1.00

Default pruned CART 1.00 1.00 1.00 1.00

Unpruned CART 1.00 1.01 1.03 1.01

CART Bagging 1.00 1.00 1.00 1.00

CART Random Forest 1.00 1.00 1.00 1.00

CART Boosting 1.00 1.00 1.00 1.00

CART Gradient Boosting 1.00 1.00 1.00 1.00

Ctree 1.00 1.00 1.00 1.00

Ctree Bagging 0.79 0.78 0.77 0.78

Ctree Random Forest 0.95 0.95 0.94 0.95

MultiVariate CTrees 1.00 1.00 1.01 1.00

Radial Kernel SVM 1.00 1.00 1.00 1.00

HRG after Logistic regression 1.00 1.00 1.00 1.00

HRG after Logistic regression Bagging 1.00 1.00 1.00 1.00

HRG after Logistic Random forest 1.00 1.00 1.00 1.00

HRG after Quadratic nonparametric
HRG after discriminant analysis 0.85 0.83 0.84 0.83

HRG after Default pruned CART 1.00 1.00 1.00 1.00

HRG after Unpruned CART 0.95 0.97 0.99 0.97

HRG after CART Bagging 1.00 1.00 1.00 1.00

HRG after CART Random Forest 1.00 1.00 1.00 1.00

HRG after CART Boosting 1.39 5.03 11.21 5.03

HRG after CART Gradient Boosting 0.74 0.69 0.67 0.69

HRG after Ctree 1.00 1.00 1.00 1.00

HRG after Ctree Bagging 1.00 1.00 1.00 1.00

HRG after Ctree random Forest 1.00 1.00 1.00 1.00

HRG after MultiVariate CTrees 1.00 1.00 1.00 1.00

HRG after SVM 1.00 1.00 1.01 1.00
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