Échantillonnage spatial : l'État de l'art

Yves Tillé Université de Neuchâtel

2018 Paris, JMS-Insee

Þ,

B

 $2Q$

◆ロ → ◆伊

Table de contents

- 1 [Introduction, notation](#page-2-0)
- 2 [Échantillonnage avec autocorrélations](#page-4-0)
- 3 [Méthodes en une dimension](#page-8-0)
- 4 [Échantillonnage spatial: deux dimensions](#page-23-0)
- 5 [Algorithme pour un échantillonnage étalé et équilibré](#page-31-0)
	- **[Conclusions](#page-66-0)**

 QQ

Notation

Notation

- Paper: [Tillé & Wilhelm \(2017\)](#page-68-1).
- Population: $U = \{1, \ldots, k, \ldots, N\}$.
- \bullet Échantillon $s \subset U$. Exemple $U = \{1, 2, 3, 4, 5\}$, échantillon $s = \{2, 3, 5\}$ autre notation ${\sf s} = (0,1,1,0,1)^\top.$
- Plan de sondage $p(s) \geq 0$ et $\sum_{s} p(s) = 1$. s⊂U
- Échantillon aléatoire S, Pr(S = s) = $p(s)$, for all s ⊂ U.
- Probabilités d'inclusion $\pi_k = \Pr(k \in S) = \sum_{s \ni k} p(s)$.
- Probabilités d'inclusion jointes $\pi_{k\ell} = \mathsf{Pr}(\{k,\ell\} \in \mathcal{S}) = \sum_{s \supset \{k,\ell\}} p(s).$

• Total
$$
Y = \sum_{k \in U} y_k
$$
.
Moyenne $\overline{Y} = \frac{1}{N} \sum_{k \in U} y_k$.

Notation

L'estimateur de Narain-Horvitz-Thompson (NHT) : $\widehat{\widehat{\, \boldsymbol{Y}}} = \frac{1}{\mathsf{\Lambda}}$ N \sum k∈S yk $\frac{1}{\pi_k}$.

$$
\bullet \ \Delta_{k\ell} = \left\{ \begin{array}{ll} \pi_{k\ell} - \pi_k \pi_{\ell} & \text{si } k \neq \ell \\ \pi_k (1 - \pi_k) & \text{si } k = \ell. \end{array} \right.
$$

Variance de l'estimateur de Narain-Horvitz-Thompson :

$$
\operatorname{var}_{p}\left(\widehat{\overline{Y}}\right) = \frac{1}{N^{2}} \sum_{k \in U} \sum_{\ell \in U} \frac{y_{k} y_{\ell}}{\pi_{k} \pi_{\ell}} \Delta_{k\ell}.
$$

$$
\operatorname{var}_{p}\left(\widehat{\overline{Y}}\right) = -\frac{1}{2N^{2}} \sum_{\substack{k \in U}} \sum_{\substack{\ell \in U \\ k \neq \ell}} \left(\frac{y_{k}}{\pi_{k}} - \frac{y_{\ell}}{\pi_{\ell}}\right)^{2} \Delta_{k\ell} \text{ (pour une taille fixe)}.
$$

Estimates
\n
$$
\widehat{\text{var}}\left(\widehat{\overline{Y}}\right) = \frac{1}{N^2} \sum_{k \in S} \sum_{\ell \in S} \frac{y_k y_\ell}{\pi_k \pi_\ell} \frac{\Delta_k \ell}{\pi_k \ell},
$$
\n
$$
\widehat{\text{var}}\left(\widehat{\overline{Y}}\right) = -\frac{1}{2N^2} \sum_{k \in S} \sum_{\substack{\ell \in S \\ k \neq \ell}} \left(\frac{y_k}{\pi_k} - \frac{y_\ell}{\pi_\ell}\right)^2 \frac{\Delta_k \ell}{\pi_k \ell} \text{ (pour une taille fixe)}.
$$
\n
$$
\text{Yves Tille} \qquad \text{Échantillonnage spatial} \qquad \text{Paris, JMS} \qquad \text{Ans. 4/69}
$$

 \curvearrowright

Modèle pour l'échantillonnage spatial

Modèle pour l'échantillonnage spatial

$$
y_k = \mathbf{x}_k^{\top} \boldsymbol{\beta} + \varepsilon_k, \tag{1}
$$

 $\mathrm{E}_M(\varepsilon_k) = 0$, $\mathrm{var}_M(\varepsilon_k) = \sigma_{\varepsilon k}^2$ et $\mathrm{cov}_M(\varepsilon_k, \varepsilon_\ell) = \sigma_{\varepsilon k} \sigma_{\varepsilon k} \rho_{k\ell}$.

Le modèle admet de l'hétéroscédasticité et de l'autocorrélation.

$$
\begin{array}{rcl}\n\mathrm{AVar}(\widehat{Y}) & = & \mathrm{E}_{\rho} \mathrm{E}_M(\widehat{Y} - Y) \\
& = & \mathrm{E}_{\rho} \left(\sum_{k \in S} \frac{\mathbf{x}_k^{\top} \boldsymbol{\beta}}{\pi_k} - \sum_{k \in U} \mathbf{x}_k^{\top} \boldsymbol{\beta} \right)^2 + \sum_{k \in U} \sum_{k \in U} \Delta_{k\ell} \frac{\sigma_{\varepsilon k} \sigma_{\varepsilon \ell} \rho_{k\ell}}{\pi_k \pi_{\ell}}.\n\end{array}
$$

Plan optimal :

- o on utilise des probabilités d'inclusion inégales proportionnelles aux $\sigma_{\varepsilon k}$,
- o on utilise un plan de sondage équilibré sur les variables auxiliaires \mathbf{x}_k ,
- on évite la sélection d'unités voisines, autrement dit, on sélectionne un échantillon bien étalé. **KORK EX KEY ADY AND YOUR**

Méthodes habituelles [\(Wang, Stein, Gao & Ge, 2012\)](#page-68-2)

Méthodes habituelles

- Méthodes habituelles: plans simples, stratifies, systématiques.
- La stratication améliore l'étalement.
- Rôle central du tirage systématique (parce que étalé).

Méthodes habituelles

Méthodes habituelles

B

 $2Q$

 $\begin{array}{cccccccccccccc} 4 & \Box & \Box & \rightarrow & 4 \end{array}$

 \mathcal{A} . э \rightarrow \sim

Monitoring de Biodiversité

L'échantillonnage le plus étalé est le tirage systématique à deux dimensions.

Table: WSL Monitoring de Biodiversité suisse

Échantillonnage spatial

Paris, JMS $8/69$

 QQ

Méthodes en une dimension: Tirage systématique 1

Tirage systématique

Probabilities d'inclusion cumulées

$$
V_k=\sum_{j=1}^k\pi_k,\;\text{with}\;\;V_0=0\;\text{et}\;v_N=n.
$$

- \bullet *u* une variable uniforme $[0, 1]$.
- Les unités telles que $|V_k u| \neq |V_{k-1} u|$ sont selectionnées dans l'échantillon. [\(Madow, 1949\)](#page-67-0)
- Entropie minimale [\(Pea, Qualité & Tillé, 2007\)](#page-67-1).

 2040

Tirage systématique 2

Tirage systématique

Example

Suppose that $N = 6$ et $n = 3$.

G.

 QQ

◆ロト ◆ 骨

4. 重 \sim

Tirage systématique 3

Tirage systématique

On suppose que $u = 0.354$.

- Comme $V_2 \le u \le V_3$, unité 3 est selectionné;
- Comme $V_4 \le u \le V_5$, unité 5 est selectionné;
- Comme $V_5 \le u \le V_6$, unité 6 est selectionné.

L'échantillon selectionné est donc $s = (0, 0, 1, 0, 1, 1)$.

Deville Tirage systématique

[Deville \(1998\)](#page-67-2) Tirage systématique

Pour chaque intervalle de longueur 1, une variable uniforme est genérée.

Une dépendance est introduite u_1, u_2 , et u_3 afin de ne pas sélectionner deux fois la même unité

KORK EX KEY ADY AND YOUR

Deville Tirage systématique

Deville Tirage systématique

• Si l'unité frontière ℓ est selectionnée à l'étape $i - 1$, u_i a la fonction de densité :

$$
f_1(x)=\left\{\begin{array}{ll} \frac{1}{i-V_\ell} & \textup{ si } x\geq V_\ell-(i-1) \\ 0 & \textup{ si } x < V_\ell-(i-1) \end{array}\right., x\in [0,1[.
$$

 \bullet Si ℓ n'est pas selectionné à l'étape $i - 1$, u_i a la fonction de densité :

$$
f_2(x) = \begin{cases} 1 - \frac{(i-1-V_{\ell-1})(V_{\ell}-i+1)}{[1-(i-1-V_{\ell-1})][1-(V_{\ell}-i+1)]} & \text{si } x \geq V_{\ell}-i+1 \\ \frac{1}{1-(i-1-V_{\ell-1})} & \text{si } x < V_{\ell}-i+1. \end{cases}
$$

Э

イロト イ部ト イ君ト イ君

 $2Q$

 2990

メロトメ 御 トメ 君 トメ 君 ト

from Michel Maigre $^\copyright$, web site de Région Wallone: Direction des voies hydrauliques, canal du centre.

Yves Tillé [Échantillonnage spatial](#page-0-0) Paris, JMS 16/69

∢ 車

 QQ

- Méthode du pivot [\(Deville & Tillé, 2000\)](#page-67-3).
- \bullet À chaque étape, deux probabilités d'inclusion (i et j) sont modifiées de manière aléatoire.
- **•** Exemple

$$
(0.07 \t 0.17 \t 0.41 \t 0.61 \t 0.83 \t 0.91) \rightarrow \begin{cases} (0 & 0.24 \t 0.41 \t 0.61 \t 0.83 \t 0.91) \t \text{prob} & 0.709 \\ (0.24 \t 0 & 0.41 \t 0.61 \t 0.83 \t 0.91) \t \text{prob} & 0.291 \end{cases}
$$

$$
(0.07 \t 0.17 \t 0.41 \t 0.61 \t 0.83 \t 0.91) \rightarrow \begin{cases} (0.07 \t 0.17 \t 0.41 \t 0.61 \t 1 & 0.74) \t \text{prob} & 0.346 \\ (0.07 \t 0.17 \t 0.41 \t 0.61 \t 0.74 \t 1 &) \t \text{prob} & 0.654 \end{cases}
$$

– ≊

イロト イ押 トイヨ トイヨト

- Méthode du pivot [\(Deville & Tillé, 2000\)](#page-67-3).
- \bullet On prend deux unités (notées *i* et *j*) dans la population.
- Deux cas: Si $\pi_i + \pi_j > 1$, alors

$$
\lambda = \frac{1 - \pi_j}{2 - \pi_i - \pi_j},
$$

$$
\pi_k^{(1)} = \begin{cases}\n\pi_k & k \in U \setminus \{i, j\} \\
1 & k = i \\
\pi_i + \pi_j - 1 & k = j, \\
\pi_k^{(2)} = \begin{cases}\n\pi_k & k \in U \setminus \{i, j\} \\
\pi_i + \pi_j - 1 & k = i \\
1 & k = j.\n\end{cases}
$$

イロト イ押 トイヨ トイヨ トーヨー

 OQ

$$
\begin{aligned}\n\text{Si } \pi_i + \pi_j &< 1 \text{, alors} \\
\lambda &= \frac{\pi_i}{\pi_i + \pi_j}, \\
\pi_k^{(1)} &= \begin{cases}\n\pi_k & k \in U \setminus \{i, j\} \\
\pi_i + \pi_j & k = i \\
0 & k = j\n\end{cases} \quad \text{et } \pi_k^{(2)} = \begin{cases}\n\pi_k & k \in U \setminus \{i, j\} \\
0 & k = i \\
\pi_i + \pi_j & k = j.\n\end{cases}\n\end{aligned}
$$

 QQ

イロト イ部 トメ 差 トメ 差 トー 差し

Variantes

- Méthode du pivot ordonnée ou séquentielle ou tirage systématique de Deville [\(Deville, 1998\)](#page-67-2),
- Méthode du pivot aléatorisée [Deville & Tillé \(1998\)](#page-67-4),
- Méthode du pivot locale ou Méthode du pivot spatiale. [\(Grafström, Lundström & Schelin, 2012\)](#page-67-5).

Variantes

- [Chauvet \(2012\)](#page-67-6) a montré que la méthode du pivot ordonné est la même que le tirage systématique de Deville.
- [Fuller \(1970\)](#page-67-7) a proposé une méthode très similaire à la méthode du pivot.
- [Tillé \(2018\)](#page-68-3) a proposé une implémentation simple de la méthode de Fuller au moyen d'une unité fantôme..

Méthode du pivot: Exemple

活

 $2Q$

 \rightarrow \Rightarrow \rightarrow

K ロ ▶ K 御 ▶ K 唐 ▶

Problèmes

Le tirage systématique ne peut pas être utilisé quand

- **1** les probabilités d'inclusion sont inégales,
- ² les unités statistiques sont disposées irrégulièrement dans l'espace.

 Ω

イロト イ母 トイヨ トイヨト

Centres des communes belges

Table: Centres des communes belges (Données IGN Belgique)

4日下

∍

B

 $2Q$

Generalized Random Tessellation Sampling

Algorithm de [Stevens Jr. & Olsen \(2003,](#page-67-8) [2004\)](#page-68-4); [Theobald, Stevens Jr.,](#page-68-5) [White, Urquhart, Olsen & Norman \(2007\)](#page-68-5)

- **O** Création d'une grille hiérarchisée avec des adresses.
- **2** On randomise les adresses.
- **3** On construit une courbe qui passe par toute les adresses.
- ⁴ On sélectionne un échantillon systématique le long de cette courbe.

L'échantillon est bien étalé.

 Ω

イロメ イ何 メイヨメ イヨメ ニヨ

Generalized Random Tessellation Sampling

L'échantillon est bien étalé.

SIL

G.

イロト イ部ト イヨト イヨ

 $2Q$

Generalized Random Tessellation Sampling

G.

 $2Q$

K ロ ▶ K 御 ▶ K 唐 ▶

Problème du voyageur de commerce

Autocorrélation le court du chemin pour le revenu moyen dans les communes : 0.4835873

Table: Tirage systématique le long du plus court chemin. [\(Dickson & Tillé, 2016\)](#page-67-9).

- ← ロ ▶ → ← 伊

 QQ

Problème du voyageur de commerce

Problème du voyageur de commerce et tirage systématique

 \leftarrow \Box

∍

 QQ

La méthode du pivot locale

Algorithme de [Grafström, Lundström & Schelin \(2012\)](#page-67-5)

- **O** On choisit deux unités *i* et *j* avec des π_k strictement entre 0 et 1 qui sont proches.
- 2 On applique une étape de la méthode du pivot *i* et *j*.
- ³ On répète ces deux étapes.
- L'échantillon est bien étalé, mais les totaux ne sont pas équilibré.

ാംഹ

イロト イ押 トイヨ トイヨ トーヨー

Méthode du cube locale [\(Grafström & Tillé, 2013\)](#page-67-10)

- Méthode du cube [\(Deville & Tillé, 2004\)](#page-67-11) pour obtenir un échantillon équilibré \sum k∈S x_k $rac{\lambda_k}{\pi_k} \approx \sum_{k \in \mathbb{N}}$ k∈U x_k .
- The méthode du cube est composée de deux phases
	- La phase de vol,
	- La phase d'atterrissage.
- Durant la phase de vol, à chaque étape, les équations d'équilibrage sont satisfaites. Le vecteur π est modifié de manière aléatoire. Une composante de π est mise à 0 ou à 1.
- Idée: À chaque étape, on applique la phase de vol sur un sous-ensemble de $p + 1$ unités voisines. (p est le nombre de variables d'équilibrage).
- L'échantillon sera bien étalé et équilibré.

イロト イ押 トイヨ トイヨ トーヨー つなべ

Algorithm for étalé et équilibré sampling (doubly équilibré)

- **•** Soit *p* le nombre de variables auxiliaires.
- Pour la méthode du cube, la dimension du sous-espace des contraintes est $N-p$.
- **•** Afin de pouvoir appliquer la phase de vol de la méthode du cube, la taille de la population doit avoir au moins $p + 1$ unités.

Algorithme On répète:

- (1) On sélectionne un ensemble de $p+1$ unités voisines qui ont des probabilités strictement entre 0 et 1.
- (2) On applique une étape de la phase de vol.

イロト イ押 トイヨ トイヨ トーヨー つなべ

Méthodes complexes

Méthodes complexes

∍ ×

4 0 8 4

 $2Q$

B

Polygones Voronoï

simple systématique stratification

Polygones Voronoï

 \leftarrow \Box \rightarrow

 -4 凸 × ∍ k.

×.

B ×

B

 299

Qualité de l'étalement

Table: Indice d'étalement spatial pour les principaux plans de sondage (Variances de la somme des probabilités d'inclusion dans les polygones de Voronoï autour des unités)-

Ē,

 Ω

イロメ イ押メ イヨメ イヨメーヨ

Conclusions intermédiaires

Conclusions intermédiaires

- Le plan le plus étalé est le tirage systématique.
- La méthode du pivot local est très bien étalée, mais n'est pas la solution optimale.
- Et-il possible de faire mieux? Un algorithme qui donne le tirage systématique quand c'est possible.

Une autre mesure d'étalement basée su l'indice de Moran

Une autre mesure d'étalement basée su l'indice de Moran

- [Tillé, Dickson, Espa & Giuliani \(2018\)](#page-68-6).
- **Corrélation entre:**
	- le vecteur des indicatrices $s = (0 1 0 0 1 \cdots 0)$.
	- La moyenne locale de ce vecteur. La moyenne locale de k est la moyenne des $\displaystyle{\frac{1}{\pi_k}-1}$ plus proches voisins $k.$

Une autre mesure d'étalement basée su l'indice de Moran

Une autre mesure d'étalement basée su l'indice de Moran

$$
I_B = \frac{(\mathsf{s}-\mathsf{\bar{s}}_w)^\top \mathsf{W} (\mathsf{s}-\mathsf{\bar{s}}_w)}{\sqrt{(\mathsf{s}-\mathsf{\bar{s}}_w)^\top \mathsf{D} (\mathsf{s}-\mathsf{\bar{s}}_w) ~~ (\mathsf{s}-\mathsf{\bar{s}}_w)^\top \mathsf{B} (\mathsf{s}-\mathsf{\bar{s}}_w)}}.
$$

 \bullet où $\mathbf{W} = (w_{k\ell})$, w_{ij} indique si j est près de *i*, w_{ij} = 0, **D** est la matrice diagonale des wi.

$$
A = D^{-1}W - \frac{\mathbf{1}\mathbf{1}^\top W}{\mathbf{1}^\top W \mathbf{1}}
$$

$$
B = A^\top D A = W^\top D^{-1}W - \frac{W^\top \mathbf{1}\mathbf{1}^\top W}{\mathbf{1}^\top W \mathbf{1}}.
$$

0

Une autre mesure d'étalement basée su l'indice de Moran

Exemples [\(Tillé, Dickson, Espa & Giuliani, 2018\)](#page-68-6)

す日→

Une autre idée

Une autre idée

- [Grafström & Lundström \(2013\)](#page-67-12) "Pourquoi les échantillons bien étalés sont équilibrés?".
- Les échantillons étalées sont équilibrés partout.
- Les échantillons étalées sont localement stratiées.
- Pouquoi ne pas stratifier partout?

Définition d'une distance

Définition d'une distance : pour le tableau

B

 $2Q$

イロト イ押ト イヨト イヨト

Définition d'une distance

Définition d'une distance : pour le tableau

Définition d'une distance

Définition d'une distance : pour le tableau

- Utilisation de la méthode du cube.
- Construction d'un matrice de contrainte avec une strate par unité.

\n- $$
\mathbf{X} = x_{k\ell}
$$
\n- $x_{k\ell} = \begin{cases} \pi_{\ell} & \text{si } \ell \text{ est une unité voisine de } k \\ 0 & \text{sinon} \end{cases}$
\n

∢ ロ ▶ 《 伊

$$
\pi_k=0.2
$$

Idée: Dans chaque strate, une seul unité est sélectionnée.

• N strates.

 QQ

イロト イ押 トイヨ トイヨト

K ロ > K 御 > K 聖 > K 聖 > 「聖 → の Q Q →

.

 $\mathsf{X}^\top = \frac{1}{\mathsf{I}}$

K ロ > K 御 > K 星 > K 星 > 「星 → の Q Q →

.

- La méthode du cube [Deville & Tillé \(2004\)](#page-67-11) peut sélectionner un échantillon avec des strates qui se chevauchent.
- **•** Problème: la matrice **X** est carrée.
- La méthode consiste à chercher un vecteur dans le noyau de $\mathsf{X}^\top \text{diag}(1/\pi)$.
- \bullet Heureusement, la matrice **X** n'est pas de plein rang dans certains cas.
- **G** Grille $c_1 r \times c_2 r$, où $r = 1/\pi_k$ est constant et entier.

 Ω

イロメ イ母メ イヨメ イヨメーヨ

 $\pi_k = 1/2$

 $\mathbf{F} = \mathbf{F}$ Paris, JMS $50/69$

 QQ

$$
\pi_k=1/3
$$

 $2Q$

$$
\pi_k=1/4
$$

舌 \sim 40

 $2Q$

$$
\pi_{\textbf{k}}=1/5
$$

 QQ

$$
\pi_k=1/6
$$

∴ B

$$
\pi_k=1/7
$$

一番 55/69 Paris, JMS

 200

$$
\pi_k=1/8
$$

$$
\pi_{\textbf{k}}=1/9
$$

Yves Tillé

i i ⊒ $57/69$ Paris, JMS

 200

$$
\pi_{\textbf{k}}=1/10
$$

∴ B

$$
\pi_{\textbf{k}}=1/11
$$

 $\pi_k = 1/12$

- 3 $60/69$ Paris, JMS

 QQ

 $\pi_k = 1/13$

 $\mathbf{y} = \mathbf{z}$ Paris, JMS $61/69$

 Ω

э

$$
\pi_{\textbf{k}}=1/14
$$

 200

 $\pi_k = 1/15$

 QQQ

$$
\pi_{\textbf{k}}=1/16
$$

G.

 QQ

Tessellation

Tessellation 1/7

Paris, JMS

イロト イ押 トイヨ トイヨト

 QQ $65/69$

G.

Etape de l'algorithme

- **O** Soit $\widetilde{\pi}$ le vecteur des probbailitées d'inclusion restreints aux k tels que $0 < \pi_k < 1$. Soit X la matrice X avec seulement les lignes des k tels que $0 < \pi_k < 1$.
- 2 On construit la matrice $\widetilde{\mathbf{A}} = (\widetilde{\mathbf{X}}^\top \text{diag}(\widetilde{\boldsymbol{\pi}})^{-1})$.
	- ${\bf D}$ Si ${\widetilde {\bf A}}$ n'est pas de plein rang, ${\bf u}=(\u_1,\ldots,u_k,\ldots,u_N)^\top\in{\mathbb R}^N$ est un vecteur dans le noyau de $\widetilde{\mathbf{A}}^{\top}$, i.e. $\widetilde{\mathbf{A}}^{\top} \mathbf{u} = \mathbf{0}$.
	- \bullet Si \widetilde{A} est de plein rang, u est le vecteur propre droit associé à la plus petite valeur singulière de A.
- \bullet On identifie λ_1 et λ_2 les plus grandes valeurs telles que $0 \leq \widetilde{\pi}_k + \lambda_1 u_k \leq 1$ et $0 \leq \widetilde{\pi}_k - \lambda_2 u_k \leq 1$ pour tout k tels que $0<\pi$ k < 1 .
- **4** On calcule

$$
\boldsymbol{\pi}^* = \left\{ \begin{array}{ll} \widetilde{\boldsymbol{\pi}} + \lambda_1 \mathbf{u} & \text{avec la probabilité } \lambda_2 / (\lambda_1 + \lambda_2) \\ \widetilde{\boldsymbol{\pi}} - \lambda_2 \mathbf{u} & \text{avec la probabilité } \lambda_1 / (\lambda_1 + \lambda_2). \end{array} \right.
$$

 $\bar{\bullet}$ $\bar{\bullet}$ $\bar{\bullet}$ On remplace [d](#page-64-0)ans π les valetrs correspond[ant](#page-64-0)[es](#page-66-0) de $\pi^*.$ $\pi^*.$

Conclusions

- Possibilité d'obtenir les échantillons les plus équilibrés.
- **o** Computer intensive
- · Possibilité d'utiliser des matrices "sparse" dans R.

 $2Q$

イロト イ押 トイヨ トイヨト

Bibliography I

Chauvet, G. (2012). On a characterization of ordered pivotal sampling. Bernoulli 18, 1099-1471.

- Deville, J.-C. (1998). Une nouvelle (encore une!) méthode de tirage à probabilités inégales. Tech. Rep. 9804, Méthodologie Statistique, Insee.
- Deville, J.-C. & Tillé, Y. (1998). Unequal probability sampling without replacement through a splitting method. Biometrika 85, 89-101.
- Deville, J.-C. & Tillé, Y. (2000). Selection of several unequal probability samples from the same population. Journal of Statistical Planning and Inference 86, 215-227.
- Deville, J.-C. & Tillé, Y. (2004). Efficient balanced sampling: The cube method. Biometrika 91, 893-912.
- Dickson, M. M. & Tillé, Y. (2016). Ordered spatial sampling by means of the traveling salesman problem. Computational Statistics 31, 1359-1372.
- Fuller, W. A. (1970). Sampling with random stratum boundaries. Journal of the Royal Statistical Society B32, $209 - 226$.
- Grafström, A. & Lundström, N. L. P. (2013). Why well spread probability samples are balanced? Open Journal of Statistics 3, 36-41.
- Grafström, A., Lundström, N. L. P. & Schelin, L. (2012). Spatially balanced sampling through the pivotal method. Biometrics 68, 514-520.
- Grafström, A. & Tillé, Y. (2013). Doubly balanced spatial sampling with spreading and restitution of auxiliary totals. Environmetrics 14, 120-131.

Madow, W. G. (1949). On the theory of systematic sampling, II. Annals of Mathematical Statistics 20, 333-354.

Pea, J., Qualité, L. & Tillé, Y. (2007). Systematic sampling is a minimal support design. Computational Statistics & Data Analysis 51, 5591-5602.

Stevens Jr., D. L. & Olsen, A. R. (2003). Variance estimation for spatially balanced samples of environmental resources. Environmetrics 14, 593-610.

 Ω

イロト イ押 トイヨ トイヨ トーヨ

Bibliography II

- Stevens Jr., D. L. & Olsen, A. R. (2004). Spatially balanced sampling of natural resources. Journal of the American Statistical Association 99, 262-278.
- Theobald, D. M., Stevens Jr., D. L., White, D. E., Urquhart, N. S., Olsen, A. R. & Norman, J. B. (2007). Using GIS to generate spatially balanced random survey designs for natural resource applications. Environmental $Manazement$ 40, 134-146.
- Tillé, Y. (2018). Fast implementation of Fuller's unequal probability sampling method. Tech. rep., University of Neuchâtel.
- Tillé, Y., Dickson, M. M., Espa, G. & Giuliani, D. (2018). Measuring the spatial balance of a sample: A new measure based on the Moran's I index. Spatial Statistics 23, 182-192.
- Tillé, Y. & Wilhelm, M. (2017). Probability sampling designs: Balancing and principles for choice of design. Statistical Science 32, 176-189.

Wang, J.-F., Stein, A., Gao, B.-B. & Ge, Y. (2012). A review of spatial sampling. Spatial Statistics 2, 1 - 14.

 Ω

イロト イ押 トイヨ トイヨト