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Introduction

In many fields of studies, observations must be classified into two differents groups.
Here are some examples of classification problems :

— predict if patient, hospitalized for a heart attack, will have a second heart attack.

The classification can be based on clinical measurements.

— predict if a websurfer will buy a product on a website, knowing his income, his age,...

— guess the number of a handwritten code from a digitized image.

For their nowcasting exercise, economists have mainly focused on point forecast, ra-
ther than on directional change forecast (or sign forecast). For example, in the Note de
Conjoncture [9], the GDP growth forecast for the flash estimate of Q1 2011 was 0.6%. An
abundant litterature on level forecasts has flourished over the past decades (see [18 28], 24]
and references therein). For the French economy, we can quote [3] [10] [§].

Surprisingly, there are few studies examining the predictability of the sign of GDP
growth movement. Methodology for sign forecast evaluation was first introduced for mar-
ket timing in [I7, [13] and for macroeconomic forecasts in [26, 23]. A nonparametric test
of predictive performance can be found in [20]. For example, [24] use [20] test to investi-
gate the ability of their level based models to predict GDP directional change from one
quarter to another. This lack of empirical studies is all the more surprising that, at the
same time, economic forecasters describe their baselined scenario in terms of accelera-
tion or deceleration : "production accelerates”, ”activity slows down”, ”"business climate
remains stable”. This qualitative economic analysis is mainly supported by two reasons.
First, this realistic view acknowledges that nobody can predict future evolution of the
economic outlook with absolute certainty (see for a detailed review on density forecast
[28]). Secondly, while accuracy, as measured by quantitative errors, is important, it may
be even more crucial to accurately forecast the sign of change (see [25]). Will real GDP
accelerate (or decelerate) ? Economists thus underline the main direction of the economy.
In other words, their review refers implictly to a sign forecast.

The purpose of this paper is threefold. First, to provide a sequential framework to
analyse sign forecasts. Indeed, the forecasting exercise is made sequentially on the basis
of real time data. Our framework differs from previous studies in two main points : it is



model free -to allow a large class of predictors- and non asymptotic -since in practice, the
number of GDP forecasts are rather limited -. The procedure to test whether forecasts are
useful is based on a comparison with naive uninformed benchmarks. Second, we conduct an
empirical comparative study between classification models, including linear discriminant
analysis, support vector machine, regression trees and level-based models including like
regression. Eventually, we construct a profile index which describes in probability terms
the risk of an upcoming deceleration.

This paper is organised as follows. Section 2 describes our data sets and defines the
problem set up. In section 3, we conduct a comparative empirical study for a wide range of
methods from econometrics to machine learning theory. In Section 4, we derive analytical
properties for future sign forecasts, namely asymptotic and non asymptotic confidence
interval. Eventually, in section 5, we construct our directional risk index to describe in
probability terms the uncertainty associated to our sign forecast.

1 Data description and problem set up

Flash estimate

Our goal is to forecast the directional change of the flash estimate GDP growth rate,
denoted by y;. Our quarterly historical data of French GDP first release starts from 1988
Q1. Flash estimates are published only 45 days after the end of the current quarter. A
natural question when defining the sign change is then : should we compare the flash
estimate 1, to the flash estimate y,_; of the previous quarter or to its updated version ?

The two issues are of great interest, as quarterly accounts are updated at each new
publication. When the results of quarter Q are first released (during quarter Q+1), the
figures for quarter Q-1 are updated and they are then likely to slightly differ from the
ones released on quarter Q. Instead of forecasting the evolution between the two first
releases of GDP growth for quarters Q-1 and Q, it would be then interesting to predict
the evolution between results of Q-1 and Q that will both be published in Q+1. Table
1 illustrates these two conventions, which can lead to different forecasts for GDP growth
sign.

TABLE 1 — Example of successive GDP growth rate publications
’ \ Date of release ‘

Q Q+1

Reference quarter
Q-1 0,3% | 0,5%
Q - 0,4%

Suppose that during forecasting exercise in quarter Q, we predict a growth acceleration
between Q-1 and Q. This means, in the first approach, that we forecast that the first
release of quarter Q growth will be greater than the available first release of Q-1 growth
(0,3%). In this approach, our forecast will be correct since first preliminary figures of Q
growth, published in Q+1, is effectively higher (0,4%). In the second approach though,
an acceleration forecast means that we predict the first release of Q growth, published
during Q+1, to be higher than the updated value of Q-1 growth published on the same
date (0,5%). In this second approach, we then fail to predict GDP directional change



correctly with this example. It is thus crucial to precisely define the starting point of
our sign forecasts. The choice made in this study to focus on the first approach (i.e.
with the example above, comparing 0,4% with 0,3%) is justified as follows : during the
forecasting exercise when we only know preliminary figures of Q-1, comments made about
point forecast for quarter () implicitely compare the latter with the first release of GDP
Q-1 growth, no matter how this Q-1 growth is going to be revised in the future.

Business surveys

In this study, the economic information included in z,, apart from past GDP obser-
vations, will be business surveys. Indeed, they are a useful source of information when
forecasting, for they present three types of advantages : (1) they provide reliable infor-
mation coming directly from the economic decision makers, (2) they are rapidly available
(about a month after the questionnaires are sent), on a monthly, bimonthly or quarterly
basis, and (3) they are subject to small revisions (each publication presents a generally
negligible revision, only on the preceding point). Insee surveys among business leaders of
all sectors are monthly qualitative surveys providing information on the rate of activity
in the recent past, during the current month and in the near future. Industry survey for
example questions 4,000 entrepreneurs about recent and probable future trends in their
production, about their total and foreign order-book levels, inventory levels and general
output prospects. Generally, these questions are qualitative : up, no change or down. The
balance of opinion, defined as the difference between the percentage of positive responses
and the percentage of negative responses, is the most widely-used indicator by outlook
analysts to summarise answers to a question. Insee also publishes a composite indicator
called the french business climate indicator : it summarises information that is common
to a set of 26 balances of opinion of all sectors business surveys [6]. Insee business surveys
provide the best advanced indicator for the output of the current quarter. Indeed, during
our forecast exercise at the middle of quarter @), results of business surveys for the two
first months of quarter ) are available. Quantitative indicators for month M (such as
industrial production index,...) are most of the time not available before the end of month
M + 1 : they won’t be taken into consideration here.

Sequential framework

In a sequential version of the sign prediction problem, the economic forecaster is asked
to guess the next direction of the flash estimate of the quaterly GDP growth rate at
quarter ¢ denoted y,. We define the GDP directional change between quarters ¢ — 1 and
q as:

g =1{yy > yg1}-

Sign serie (g,) for the period [2000Q1;2010Q4] is for example shown below :

With this notation, we say that there is an acceleration at quarter g (respectively
deceleration) if ¢, = 1 (resp. ¢, = 0).

Following the sequential framework in [4], at each quarter ¢ = 1...QQ, we observe the
economic data z, € R? containing various economic information, including past GDP
observations. At quarter ¢ though, the first release y, and thus the sign change ¢, are
unknown. Indeed, for Insee ” Conjoncture in France” [9], economists forecast GDP growth
of the current quarter during the middle of the quarter. However, national accounts will



Qtrl  Qtr2 Qtr3d Qtrd

2000 0 0 0 1
2001 0 0 1 0
2002 1 1 0 1
2003 1 0 1 1
2004 1 1 0 1
2005 0 0 1 0
2006 1 1 0 1
2007 0 0 1 0
2008 1 0 1 0
2009 1 1 1 1
2010 0 1 0 0

publish the flash of the current quarter (quarter ¢) during the middle of the next quarter
(quarter g + 1).

The economic forecaster is thus asked to guess the next outcome g, of a sequence of
binary outcomes ({0,1}) €1, ...,e,_1with the knowledge of the past e;— := (€1, ...,€4-1)
and the side economic information z; := (z1,...,x,) : is there an acceleration or a dece-
leration ? In other words, the elements €1, ¢, ... and x1, x5, ...are revealed one at a time,
beginning with (x1,yo), (22, 1)...and the forecast at quarter ¢ is based on e;— and 4.

To evaluate a forecasting strategy, we need then to simulate it on a realtime basis.
This appears possible thanks to the nature of our data. Recall indeed that flash estimates
are the first releases of GDP growth rates as published by national accounts and thus
are realtime data. Business surveys, at last, can be considered as ”pseudo-realtime” data.
Indeed, balances of opinion are only slightly revised over time. French climate indicator,
though, was first published in January 2009, and its coefficients are re-estimated every
year, possibly inducing slight revisions. However, this synthetic indicator appears to be
very stable over time [2], and can then also be considered as ”pseudo-realtime” data.

Formally, a forecasting strategy is defined as a family of predictors (¢), :

€q = Qgl7g,6577)-

Loss function

To evaluate a forecasting strategy, we need to define a loss function. At quarter g, the
(normalized) cumulative loss related to the strategy (¢,) is defined as :

Lo(60) == YUt £ 60).

t=1

This loss function is equivalent to the average error rate 1, := 1{&; # &} over the
period [1,¢|. A natural loss function for risk adverse agents could make misclassified
decelerations more costly than misclassified accelerations. However for sake of simplicity,
we restrict our analysis to the symmetric indicator loss. In the next sections, we compare
forecasting errors for different strategies since 1997, date of the first available quarterly
Insee GDP forecast.

At this point, obviously, the mean error of any strategy takes its value in [0, 1]. L,(¢7) =
0 (respectively L,(¢7) = 1 ) means that the strategy ¢, perfectly forecasts the sequence
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of signs (resp. was wrong at all time). But in between, what is a good strategy ? In this
study, our approach is to compare any strategy with the optimal forecasting strategy of
an uninformed forecaster trying to minimize his loss. To minimize in probability the worst
case over all possible outcomes, the uninformed agent forecast the next sign change by
simply drawing a random variable from a Bernouilli with parameter 1/2.

) = O () = g

A simple model free test

The expected normalised loss is then ELy(¢;*"%™) = 1/2, which means that on the
long run, the average error of a uninformed forecaster will be equal to 0.5. Recall that
qL,(¢,) is distributed as a binomial distribution with parameters n = ¢ and p = 1/2.
Thus, with great probability (95%) over the period [1997Q1;2010Q4] (52 quarters), the
mean error is greater than 35%. A strategy is all the better than it is unlikely that an
uninformed forecast reaches the same error rate. We define the p-value of a strategy ¢, as

Pq = P(Lq(¢2andom) < Ly(q))-

By convention, we say that a strategy is significant at level « if p, < . In other words,
if p, < o, it means that a random forecast has less than a% chances to get an error rate
lower than the error rate L,(¢,) of the strategy ¢,.

2 Empirical comparison on historical data

In this section, we conduct a comparative study between different class of models
ranging from econometrics to machine learning.

2.1 Naive strategies
Freeze strategy

Notice that, since 1997, quaterly signs (¢,) have alternate about 63% of the time. A
strategy would be to predict, for each quarter, the opposite sign of the previous observed
direction change :

{;:; — gz527”61}.value(&.q_il) —1— Eq1-
Numerical application : Freeze mean error over the period [1997Q1;2010Q4] is
36%. The corresponding p-value is 1,8 x 1072,
Long term mean forecast

This strategy consists in assuming the current quarter sign to be equal to the long
term mean of the past observed signs (which is then rounded to 0 or 1).

= ongterm 1 :
561:% 9t <€q—l):1{5zet2075}-
t=1

Numerical application : Long term strategy mean error is 41%. The corresponding
p-value is 5,0 x 1072,



Markov strategy

Here we assume e5 to be the outcome of a homogeneous Markov chain of order 1 with
probability transition matrix II. Forecast is then given by :

Eq = Oqleg) = ATgmal‘ie{o,l}ﬂ(gq—b i)

where TI(g,_1,1) := P(E, = i|Ey_y = £4_1).

In other words, suppose we observed at ¢ — 1 that ¢, = j, then we will forecast for
quarter ¢ the most likely occurrence of E, when its previous value was j.

Numerical application : Markov strategy mean error since 1997 is 36%. The cor-
responding p-value is 1,8 x 1072,

2.2 Business surveys based strategies

In this section, we incorporate business surveys in our strategies. Balances of opinion
from business surveys provide indeed an adequate predictor of the GDP sign change. For
example, figure below corresponds to GDP growth signs, with the lag value of GDP’s
growth in the z-axis and the French business climate growth in the y-axis. These two
variables appear to be not-so-bad input variables for sign prediction : activity is obviously
more likely to accelerate when business climate is accelerating and when GDP growth
during the previous quarter was low. This illustrates the opportunity to test parametric
classification models with business surveys as explanatory variables.

Scatter plot of GDP's growth profile
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Recall the forecaster is asked to guess the next directional change &, with knowledge of
the past observations z,. Thus, mean errors of the strategies presented below are computed
on an out-of-sample basis.

Note : parametric methods presented in this section are computed thanks to R©
software packages ”"dynlm”, ”"MASS”, "rpart”, ”svmpath”.

Regression model based forecast

Here we derive a profile forecast from a quantitative GDP growth forecast. Quantita-
tive forecast is obtained through an usual least-square regression model. Direction forecast
is then simply obtained by comparing the point estimate of the current quarter y, with



the observed growth rate of the previous GDP release y,—;. This approach is the most
commonly used (see introduction). This strategy is then defined as :

Eq = 047 (wg) = 1{Ug = Yg1}-

The ”core model” used to predict y, includes the lag-value of flash estimate y,_;, the
level of French business climate indicator F, for quarter ¢ (in fact, the sum of the three
previous monthly indicateur observed, see notations below) and the ”signed” acceleration
of this indicator AF, |AF,| :

—_

yéDR:30+B\1yfﬁ+§2Fq+B\3AFq|AFq|'

where F, = facfry,1 + facfrqe + facfry_13, facfry; denoting the monthly business
climate indicator for the *» month of quarter ¢. The vector B stands for the ordinary
least square estimates. Recall that during the forecasting exercise around the middle of
quarter ¢, the most recent availabe indicator is facfr,s.

Numerical application : The normalised loss of the regression based strategy &, =
1{Jy > y,—1} is 18% since 1997. The corresponding p-value is 8,4 x 107".

We also estimate a second model, which includes balances of opinion in manufacturing
industry dealing with recent changes in output (manuf.tppa,;) and personal production
expectations (manuf.tppre,;). Output in manufacturing industry is indeed considered as
one of the best leading input variables for GDP growth :

Yo = Po + Bryg—1 + Bayg—a + Pymanuf.tppags + fa(manuf.tppag,s — manuf.tppag,)
+0s(manuf.tppreq s — manuf.tppreq) + s (manuf.tppreqi — manuf.tppreq_13)

Numerical application : Sign mean error with the profile based on the ”manufac-
turing model” is 18%. The corresponding p-value is 8,4 x 1077,
Probit forecast

Signs ¢, can be directly predicted through a parametric probit model, with a set of
explanatory variables x,. This model states that :

P(ey = 11Xy = ) = F(Bz,)

where F' is the cumulative normal distribution. Coefficients 3 are estimated by likelihood
maximisation. Sign forecasts are then given by :

& = (ag,emr) = 1 {F(qu) >0, 5} .

Here we also consider two sets of variables for z, :
— the ”core” variables used in the ”core model” of the previous section

(yq—la Aan AFq |AFq|)-

— the "manufacturing” variables used in the ”manufacturing model” of the previous
section

Yq—1,Yq—a, manu f.tppag 2, manu f.tppag 2 — manuf.tppag 1,
manuf.tpprego — manuf.tppreq 1, manuf.tppreg1 — manuf.tppreqg—i3

Numerical application : The mean loss for ”core” model (resp. manufacturing model)
is 14% (resp. 16%) since 1997. The corresponding p-value is 3,6 x 1075,
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”Linear/Quadratic discriminant analysis” (LDA/QDA)

Linear discriminant analysis (LDA) is a classification method. It provides linear deci-
sion boundaries depending on the observed variables X, (for more details see [12] and refe-
rences therein). This method requires the knowledge of the class posteriors Pr(e/X = .).
Let fi(.) be the posterior density of X given class ¢ = k (k € (0,1)), and let 7, be the
prior probability of class k, with Z;lg:o mr = 1 . A simple application of Bayes theorem

gives us :
PT(EZMXZQT):M'
> =0 ilz)m

Suppose each class density fi(x) is a multivariate Gaussian with mean py and cova-
riance matrix Y. Linear discriminant analysis arises in the special case when we assume
that the classes have a common covariance matrix ¥, = ¥ Vk (otherwise we apply the
term ”quadratic discriminant analysis” - QDA - where more factors are to be estimated).
In practice, the parameters (7 ug, Xx) are unknown, so we must estimate them through
our historical data :

— 7 = Ni/N , where N is the number of class-k observations,

- EE = Zaq:k xQ/Nk’ )

- X=3 ilwg — ) (g — )" /(N — K).

The LDA rules can be written as a function of these estimated parameters. More precisely,
the LDA rule classifies the observations x4 in class k = 1 rather than class k = 0 if :

Pr(e, = 11X, = z4) > Pr(e, = 0| X, = x4)

— 2SN — ) > S S i - ot SV h + log(No/N) — log(N1 /N).

We see that decision boundaries correspond to linear functions of the explanatory
variables z,. Profile forecast is then given by :

£ = 0P eg) = 1 {57 @ - ) > TS - TS +Log(No/N) — log(Ny/) ).

Notice that with two classes there is a simple correspondence between LDA and
classification by linear least squares. This is equivalent to directly estimate the model
g = Bo + Brylll + BoFy + BsAF, |AF,| + &, then to classify & according to the position
of 5Aq compared to 0.5.

Numerical application : We consider for X, the ”core variables” presented above.
Mean of forecasting errors is 12% since 1997. The corresponding p-value is 6,5 x 1077,

We also considered the LDA-extension method, i.e. the quadratic discriminant analysis
(QDA). The mean loss is a bit higher than with the LDA method (14% since 1997). Indeed,
QDA implies the estimation of a lot more parameters (the variance parameters, see above)
than LDA, with a limited number of observations (around 76 quarterly observations in
our case). Consequently, due to an increasing complexity, results are then less accurate.

Recursing partitioning (RPART)

Classification and regression trees (as described in [5]) can be generated through the
"RPART” algorithm. The goal is to predict directional change (acceleration or decelera-
tion), on the basis of our observed economic variables z,. The tree is built by the following
process : first the single variable is found which best splits the data into two groups. The
data is split, and then this process is applied separately to each sub-group, and so on until
the subgroups either reach a minimum size or until no improvement can be made. The



second stage of the procedure consists of using cross-validation to trim back the full tree.
We use as external observations the ”core” explanatory variables (y,—1, AF,, AF, |AF,|).
The resultant model separated the observations into four groups as shown in figure be-
low, where varl = y,_; and var3 = AF,|AF,|. We see that the second variable of our
explanatory observations set is not used to build the tree, which could explain the poor
results obtained compared to other classification strategies (see below). We tried other
sets of explanatory variables, but no other specification improves the performance.

78 profile observations :
38 acceleration / 38 deceleration

PN

Var1=0,62 Varl< 0,62
25 acceleration / 2 deceleration 13 acceleration / 36 deceleration

PN

Var3< -0,1 Yar32 -0,1 '
10 acceleration / 10 deceleration 3 acceleration / 26 decdleration

PN

Var1l=>0,26 Varl< 0,26
5 acceleration / 2 deceleration 5 acceleration / 8 deceleration

Sign forecast &, = ¢/P*"(x7) is given by one of the final knot reached by the observation
Xy = x4.

Numerical application : The mean error since 1997 is 25%. The corresponding
p-value is 9,1 x 1075,

Support vector machine (SVM)

Support vector machines (SVM, see [12]) is a generalization of linear decision boun-
daries for classification like LDA : SVM produces nonlinear boundaries by constructing a
linear boundary in a large, transformed version of the feature space. Besides this method
deals with non-separable cases, as it allows for some points to be on the wrong side of the
margin. These misclassified points are penalized with a certain cost parameter C' which
has to be set. A high C' means for example that we want to minimize the number of
misclassified datapoints : notice that this can lead to an overfitted model which fits well
training data but do wrong for forecast. The optimal value for C' can be estimated by
cross-validation.

SVM decision boundary is written as :

{z,such as f(z,) == h(zy)" B+ By =0}

where h can be a non-linear function of the observations z,. The introduction of such
function allows to transform the initial observations z, space to an enlarged space f(z,) :
this is likely to achieve better training-class separation. This decision boundary then
translates to nonlinear boundaries in the original space. Next, parameters ([, ) are



estimated in order to optimize the decision boundary between the two classes of € (0 or
1):
eof(g) 21 =&,V

min || || subject to
§ 20,26 <C

where £, denote the slack variables authorizing missclassified points (here, missclassi-
fications occur when &, > 1). It can be shown that the solution only involves h(z) through
its inner product K(z,2") = (h(x), h(2")). SVM algorithm provided by R© ”svmpath”
package allows us to choose between K kernel-functions like :

dth-degree polynomial : K (z,2") = (14 (z,2'))?
radial basis of order v : K(z,2') = exp(— ||z — 2'|°)

Forecast is finally given by the classification rule induced by f(x) :
Eq = O¢(aq) = sign (f(%)) :

Here we take for z, the core variables exposed above (i.e. with french business indica-
tor’s level and acceleration).

Out-of-sample forecast errors are fewer when we set a high cost parameter C' (i.e. when
we are close to a separable case). Hence we see here that there is no gain in enlarging
our observation space with a non-linear function h. Besides, kernel-function K that leads
to the best out-of-sample performance is the 1th-degree polynomial function : this is
equivalent to a linear decision boundary.

Numerical application :The error rate is then 16% since 1997. The corresponding
p-value is 1,8 x 1077,

Summary of the strategies forecasting performances

On our historical data, we summarize previous empirical performances in the table
below. The two main conclusions are :

1. Using business surveys, quantitative model based strategies can slightly surpass
Insee performance. Best methods include Linear Discrimant Analysis and Probit,
with a error rate of 12%.

’ Strategy ‘ Error since 1997 ‘ p-value ‘

Random forecast 0,50 -

Opposite of the previous value 0,36 1,8 x 1072

Opposite of the long-term mean 0,39 5,0 x 1072

Markov forecast 0,36 1,8 x 1072

Regression model (core variables) 0,18 8,4 x 1077

Regression model (manufacturing variables) 0,18 8,4x 107"

Probit (core variables) 0,14 3,6 x 1078

Probit (manufacturing variables) 0,16 1,8 x 1077

LDA (core variables) 0,12 6,5 x 1079

QDA (core variables) 0,14 3,6 x 1078

RPART (core variables) 0,25 9,1x107°

SVM (core variables) 0,16 1,8 x 1077
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So far, we have conducted an empirical comparative study on our empirical data. In
other words, we have answered the question : what would have been the error rate of a
forecast using such strategy from 1997 Q1 to 2010Q4 7

A natural question is now : what can be said about future nowcasts ? What about the
error rate of a chosen strategy during the next ) quarters? To answer those questions,
we must take into account different kinds of uncertainty to derive analytical properties.
We tackle these issues in the next section.

3 Prediction for future sign forecasts

3.1 Test of independence

Recall the forecast errors are denoted by 7, := 1{e; # &,}. To model uncertainty, we
consider (n,) as the outcome of a random process (H,). In order to derive analytical
properties, a central point is then to test whether forecast errors are independent or not.
For example, if forecast errors of a given strategy are concentrated over the end of the
period, it will raise serious doubts about the ability of this strategy to predict next GDP
growth signs. Non stationary underlying processes could for instance explain such time-
correlated forecast errors. For the sake of simplicity, we suppose that the time dependency
can be of order 1 at the most. Recall that independence is equivalent to : for any ¢,1, j,

P(Ht - 7:, Ht,1 — ]) - P(Ht - i)P(Ht,1 - ])

which can be rewritten as :

P(H,=1,H_,=1) =P(H,=1)P(H,_, =1)
P(H,=1,H,1 =0) =P(H, =1)P(H,, =0)
P(H,=0,H,; =1) =P(H, =0)P(H,_, =1)
P(H,=0,H,_; =0) =P(H, =0)P(H,_, = 0)

Since (1;) is a dummy function, previous equations are equivalent to test the single
equation Cov(Hy, H;_1) = 0.

Proposition 1. With the previous asumptions, an asymptotic a-level test for the null
hypothesis Hy := {Cov(Hy;, H,_1) = 0} can be defined by the following reject region :

{ JOCou(H,, Hy 1) - /2}.

R X R H; 1 H, o
with A == (1, B(Z3), B(Z?)), Z; :== H; , and X = Var(Zy)+2 [cov(Zy, Za) + cov(Zy, Zs)]
Hi

and qi—aj2 the 1 — a/2 normal quantile.

Proof : see appendices.

Numerical application : For all the strategies presented above, we do not reject
the null hypothesis of independent forecast errors. Indeed relevant tests all belong to
[—1.2,0.5], that is inside the 95% confidence interval [—1.96,1.96]. As a conclusion, we
will assume afterwards that forecast errors of all strategies are time-independent. However,
two different strategies can still have correlated forecast errors.
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3.2 What is the future error rate of a given strategy ?
Asymptotic approach

For a given strategy ¢;, we estimated the mean of forecast errors with the historical
data by p1. We now want to predict the mean of the future forecast errors during the next
h quarters 1,,q = @ + 1...QQ + h. The mean of the future forecast errors during the next
h quarters will be & Z?:glﬂ M-

If h is large enough, we apply the central limit theorem and we have asymptotically
with probability 1 — « :

1 Q+h 0o
1—a/2

= Y H ep+

ht=Q+1 \/E

with p; the (unobserved) true expected error rate for strategy ¢;, o is the (unobser-
ved) stantard-deviation of 7, and ¢;_, is the (1 — a)-quantile of the standard normal
distribution. Thus, the length of the confidence interval is controled by a forescast error
which converges to 0 at rate 1/ Vh. However, since p; is unknown, we must estimate it
through our historical dataset. Denoting () the size of our historical sample, we obtain for
large () with probability 1 — « :

0q1—a/2

P EP =
V@

In this equation, the length of the confidence interval is controlled by an estimation
error term which tends to 0 at rate 1/4/Q. Combining both equations, and replacing o

by its empirical counterpart ¢ := \/ﬁ Z?Zl(Hq — H)2 = \/pi(1 — 1), we apply the
central limit theorem for large ) and h.

Proposition 2. Under previous asumptions, we get asymptotically with probability 1 —« :
< 1

S H €fitinan| = +
VK

Forecast error Estimation error

1
Q

{&l-

Thus, uncertainty, measured as the length of the confidence interval, results from two
sources of uncertainty : forecast uncertainty and estimation uncertainty.

Numerical application : with p; =~ 0,15 (e.g. a value close to our best strategies),
we obtain :

— with N = 60 (15 years) and Q = 8 (2 years) the 90% confidence interval for the

future mean of forecasts errors will be [0, 0.5].
— with N = 60 (15 years) and @@ = 60 (15 years) the 90% confidence interval for the
future mean of forecasts errors will be[0, 0.33].

These confidence intervals for future forecasts may look quite large. But notice that
any of our parametric strategies is a lot more successful than the random strategy. The
upper bound of the relevant 90% confidence interval for best parametric strategies (e.g.
around 0.5 with N = 60 and @ = 8) is indeed around 0.5 with N = 60 and @) = 8. At the
same time, an uninformed agent will only be able to give the following confidence interval
for the mean of its future forecast errors : 0.5 & 0.5 * 2  (1/v/60 + 1/v/8) = [0.1]. The
corresponding upper bound hence reaches in that case the maximum possible value of 1!

12



Finite sample approach

Previous results are only valid when @) and h are large (application of the central limit
theorem). However, in practice, we only have access to a limited number of observations.
Thus the relevance of previous bounds can be challenged. In this paragraph, we derive
finite sample results to deal with this issue.

A first approach consists in using Hoeffding’s inequality ([14]). The latter upperbounds
the probability that the distance between empirical mean and expectation is large.

Proposition 3. Then, with a probability lower than 1 — «, we have :

1 N In(4/a), 1 1
|@§Hq—171|§ 5 (\/@+\/N)'

Proof : see appendices.

Numerical application : for N = 60 and Q = 8 the interval length around p; is
+0,6! (£0,3 when N = @ = 60).

We lose a precision factor of order 3 in these bounds in comparison with the asymptotic
approach. If we compare the two expressions, the variance term ¢ is missing in the finite
sample bounds. Thus it is a uniform bound that does not take into account the fact that
the variance can be small. To fill the gap, using inequality in [16], we derive an upper
bound with an empirical variance term.

Proposition 4. Under previous assumptions, we have with probability 1 — ¢ :

1 P - 11 7TIn(8/5) In(8/8)  2In(8/5)
|qu:Hq p1|§ N\/21 (8/5) <\/Q+\/N)+3(N_1)+ 3Q + /762(]\7— )

Asymptotic bound Approzimation error

Proof : see appendices.

The confidence interval length is of order £0,5 (h = @ = 60). This disappointing
result in comparison with the previous inequality is due to the fact that, in our case,
the empirical variance oy is not small enough to compensate the approximation term.
However it still might be interesting for other applications. As expected, the length of
the confidence interval is larger in the finite sample approach than in the asymptotic
framework.

Thus, for practical purposes, economic forecasters may consider those intervals too
large. To deal with this issue, notice that the error rate can be seen as an average error
over all possible outcomes x,. In probability terms, the empirical error rate estimates the
unconditionnal expected error i.e. Ex, . (g4). For a particular quarter ¢, it is all the more
interesting for the forecaster to give a conditionnal directional scenario, i.e. E(¢,| X, = z,).
Indeed, if on average, the error rate is equal to 12%, the conditional error E(g,| X, = z,)
could be even smaller. This partial conclusion advocates for a conditional approach.

13



4 Directional risk index

In this section, we define a ”directional risk index”, which will give for each quarter
the conditional probability of success (or failure) associated with our directional forecast.
More precisely, it will give the probability to be in an acceleration state (e.g. &, = 1) or in
a deceleration state (e.g. ¢, = 0). For symmetry reason, this ”profile index” ranges from
—1 (deceleration) to +1 (acceleration). We define the directional risk index by :

I, :=2(P(e, = +1|z5) — 1/2)

with P(e, = +1]x;) the estimated conditional probability of being in an acceleration
state given the knowledge of the business surveys up to quarter g. We can also define an
"area of uncertainty” when, by convention, the directional risk index lies in the interval
[—0.5,40.5]. A profile forecast associated with a directional risk index that falls into the
area of uncertainty has then to be considered carefully. To build this probability index, we
consider two previous strategies : the regression model strategy, and the probit strategy.

4.1 Directional risk index derived from the regression method

To derive such an index, we need somehow to introduce probability in the previous
strategy. In the regression approach, it is usual to assume a linear statistical model with
1.2.d. errors such that :

Yg = Bo + Pryg—1 + BoFy + B3 AF, |AF,| + &,

This model gives for each quarter ¢ the growth level forecast ¢,. Recall sign forecast was
then given by :
¢q(77) = 1{Ug = yg-1}

with ¢, = x;g and B the ordinary least square estimate. We estimate the density of the
error term §, with a kernel-type estimation :

xr —

~ 1 Q T
fele) = 7 SO K(ET

where h is the optimal kernel bandwidth. It follows that :

Pyleq =1) =Py(§ = yg-1 — :E;ﬁ) ~ Pfg(gq 2 Yg-1 — x;ﬁA)

~

The following graph provides the corresponding directional risk index I, := 2(P(e, =
+1|z;) — 1/2) (horizontal lines delimit the area of uncertainty) :

14
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Over our historical sample, the directional risk index falled in the "reliable area” (e.g.
out of the "area of uncertainty”) around 66% of the time. Inside that area, the average
error rate {7, = 1} obtained through any of our best strategies (LDA, probit, regression...)
falls below 4% (that is, only 2 wrong forecasts in this area over the period 1997-2010).

4.2 Directional risk index derived from the probit strategy

Recall the assumptions behind our probit forecast strategy :
P(eq = 1|Xy = z¢) = F(Bz,)

With our previous notations, we can then easily define our directional risk index as :

A~

Py(ég11 = £441) = 2(F(Bz,) — 0,5).

We obtain the following index :

Over our historical sample, the directional risk index falled in the "reliable area” (e.g.
out of the "area of uncertainty”) around 61% of the time. Inside that area, mean of
forecast errors {n, = 1} also falls below 4% (that is, only 2 misleading forecasts over the
period 1997-2010 in this area).
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Conclusion

In this article, we studied French GDP directional change forecasts rather than le-

vel growth predictions. Quantitative strategies based on business surveys such as Linear
Discrimant Analysis can largely surpass a random forecaster performance, with an error
rate of 12%. Eventually, using our directional risk index, an economic forecaster can even
specify the uncertainty inherent to his directional forecast and conditional on present
economic information.
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Appendices

Proof of proposition
Notice that :

Cov(Hy, Hy_y) — Cov(Hy, Hy_y) = (E(Ht,Ht ) - E(Ht_l)E(Ht)>
— (E(Hy, Hier) — E(Hi-1) E(Hy))
= (E(H,, H,—y) — E(H,;, Hy_y))
+ E(H,1)(E(H,) — E(H,))
+ E(H)(E(H,—y) — E(H,_1))
H;_1H;

Denoting Z; := H; ,we have :
H;

Cov(Hy, Hy 1) — Cov(Hy, Hy 1) = (E(Z}) — E(Z)) + E(Z)(E(Z2) — E(Z2)
+ B(Z})(E(Z}) - B(Z})
= (1, B(Z}), B(Z)(B(Z,) — E(Z,))

Assuming that time-dependence is of order 1 at the most for H;, time-dependency of
Z, is then of order 2 at the most. We can then apply a central limit theorem :

Q
VQ (Z Z; — EZl> = N(0,%)
i=1
with

Y =Var(Zy) + 2[cov(Zy, Zs) + cov(Zy, Z3)| = Var(Zy + Zy + Zs)

and
cov(Z;, Z;) = sym (E [Zi — E(Zi)] [Z; — E(Zj)],>
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Indeed if we try to find ar such as Var(aTZT) — T k£ 0

os(22)

Var(aTZT = —Vcw" ZZ

a T T
= TZE sz E (Z@)

Lj=1

— ;TQTQE i (Z; —EZ;) i (Z; — EZj)
_ a_2T2 E ((Zi —EZ) (Z; - ]EZJ)/)
“ (f: Var(Z)+ Y B((Z-EZ) (2 - EZJ))
~ 1<i#j<T
= D var(z) + T2 (B (2~ B2) (2~ B2 ) + B (2 - B22) (21~ E20) )
122 (B (2 E2) (2, - B2 ) + (<Za ~EZ) (2 ~E2))))

2

a T —
= ?T (Var(Zl) +

1
2cov(Zy, Zs) + 2001) (Z1, Z3)

Hence we have to choose ap = v/T,which leads to :
Var(NTZr) —rse % i= Var(Z)+2cov(Zy, Zo)+2cov(Zy, Zs) = Var(Zy+Zo+Zs) =V ar(Zy+Z,)

Denoting \ := (1, E(Z}), E(Z}?)) central limit theorem gives, under suitable condi-
tions :

VOW(E(Z) — E(Z))) = N(0,N'ZN)

which is equivalent to :

A

VOXN(E(Z) — E(Zy))
VAT

Finally we get, by replacing ) in the following expression :

VON(E(Z,) - E(Z))

by A= (1, E(Z3), E(Z2)) et & := Var(Zy) + 2 [cov(Zy, Zs) + cov(Zy, Z5)] -

\/@ (50\/(}(Ht, Htfl) — CO’U(Ht, Ht71)>

VAT

From this previous expression we derive an asymptotic a-level test for the null hypo-

thesis Hy := {Cov(Hy, H;—1) = 0} :
= Q1a/2}

{ \/_Cov Ht,Ht 1)
VIS

= N(0,1)

= N(0,1)

>~

= N(0,1)
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Proof of proposition
Using Hoeffding’s inequality in ([14]) :
Q+h
]—ZH —pi| > e+é) <P ZH —pi| =€) +P(lp1 — p1| > €)
< 2exp(—2Q€ ) + 2exp(—2N&?)

Let us choose ,& such as 2exp(—2Q¢c?) < «/2 and 2exp(—2Né&?) < «/2, ie. ¢ =

In(2/a) In(2/a)
50 et € = — i

L]
Proof of proposition

For this, recall two useful inequalities :
1. Bennett’s inequality ([14]) : with probability 1 —§ :

A, BH| < \/QV(H) In(2/5) , n(2/6)

n 3n

2. A second inequality in [16] makes the connection with the empirical variance : with
probability 1 — 9, we have :

21n(1/9)

n—1

Combining these two inequality, we obtain with probability 1 — 49 :

1 N 1 ~
|62Hq_p1| < |_2Hq—p1|+|p1—p1|
q

202 In( 2/(5 ln 2/5 202 1n(2/5) 111(2/5)
3N

T

21n(2/5) (U 2111 1/5 ) I 2/5

L [2n2/9) <&N 2;\1;(1/15)> . In 2/5

. 1 1 71n 2/5 ln (2/0) 21n(2/9)
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