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tionWe are interested in this paper in studying the spatial representativeness of servi
es likes
hools, medi
al servi
es, pharma
ies, shops, restaurants, banks... in the 
ity of Rennes.More pre
isely, we fo
us on the two following questions. May two di�erent servi
es beassumed to be identi
ally spatially distributed in the 
ity or in a restri
ted area? Is thespatial distribution of one parti
ular servi
e homogeneous with respe
t to houses in the
ity or in a restri
ted area of interest?Assuming that the spatial representation of houses or servi
es 
an be modelized by aspatial Poisson pro
ess (see [15℄ and [3℄ for instan
e), these questions 
an be translatedfrom a statisti
al point of view as problems of testing proportionality or equality of theintensities of two independent spatial Poisson pro
esses.Here we 
hoose to investigate non parametri
 tests that have been re
ently proposedby Baringhaus and Franz [2℄, Gretton et al. [14℄, and Fromont, Laurent, Reynaud-Bouret[12℄. Sin
e the tests by Fromont, Laurent, Reynaud-Bouret were not studied in pra
ti
ein the original paper in a spatial 
ontext, we �rst evaluate the performan
e of the abovetests with multivariate simulated data.Then, we apply them to e
onomi
 data from l'INSEE 
ontaining the (x, y)-
oordinatesof houses and servi
es on a map of Rennes in 2007. The obtained results are mostly ina

ordan
e with our expe
tations. But some of these results also pose new theoreti
alquestions, thus 
on�rming that modelizing e
onomi
 data with Poisson pro
esses, morefrequently used in reliability and biology, o�ers a lot of possibilities.
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1 Point pro
esses and Poisson pro
esses1.1 De�nition and �rst propertiesPoint pro
esses are the mathemati
al tool at hand to modelize dots (or events) that appearat random on a domain. Here, "at random" may be understood with respe
t to time, orwith respe
t to spa
e, or both. Let us take the example of the opening of new shops in agiven town along a spe
i�
 year: we may be interested in the spe
i�
 times of opening, ifwe want to identify periods of more or less a
tive trading; alternatively we may 
onsiderthe lo
ations 
hosen by these shops if we want to get a pi
ture of the more or less dynami
areas, or we 
an get interested in when and where the shops open. One mathemati
alway to address those problems is to represent ea
h new shop by a dot on the map, andto observe where or/and when the dots appear: the out
ome is a point pro
ess.Poisson pro
esses are by far the most popular point pro
esses. Roughly speaking, apoint pro
ess is a Poisson pro
ess if dots appear independently (in time and/or in spa
e)from ea
h other. Remarkably enough, this heuristi
s has led to a variety of de�nitions ofa Poisson pro
ess, a

ording to the �eld of interest, all of whi
h are lu
kily 
ompatible.The de�nition we shall use here is taken from [17℄. It seems to be the 
losest to ourpurpose.A spatial point pro
ess N is a random 
ountable subset of X ⊂ R
2. We asso
iate to

N its intensity, whi
h is a measure ξ on X, assumed to be bounded on 
ompa
t sets andabsolutely 
ontinuous w.r.t. the Lebesgue measure ν. Let s be the asso
iated density,also 
alled intensity of N . For all B ⊂ X, we denote by N(B) the number of elements of
N that lie in B.De�nition 1. N is a Poisson pro
ess on X ⊂ R

2 with intensity s w.r.t. ν if and only if1. For every B ⊂ X su
h that ξ(B) < ∞, N(B) is distributed a

ording to a Poissondistribution with parameter ξ(B) =
∫

B
s(x)dνx;2. Conditionally to the event "N(B) = n", N ∩ B has the same distribution as an

n i.i.d. sample with 
ommon density s/
∫

B
s(x)dνx with respe
t to the Lebesguemeasure ν on X.The intensity s has to be understood in an easy way: in areas of X where s takes highvalues, you will expe
t more dots than in areas where s takes low values, and you will�nd no dots at all in subsets of X where s = 0. If the intensity s is 
onstant, you willexpe
t the dots to be uniformly distributed on X.De�nition 2. N is said to be homogeneous if and only if its intensity is 
onstant on X.Among the 
lassi
al properties of a Poisson pro
ess, we only re
all here the mostimportant one.Proposition 1. If B1, · · · , Bk are disjoint subsets of X, then N ∩ B1, · · · , N ∩ Bk areindependent.
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1.2 Poisson pro
esses and servi
es or houses representativenessRe
all that we study the representativeness of servi
es in the 
ity of Rennes. It seemsrather natural to assume that the 
oordinates of spe
i�
 servi
es or houses form non-homogeneous Poisson pro
esses in a subset of R
2.In order to be perfe
tly rigorous, this assumption should of 
ourse be validated by astatisti
al test, but to our knowledge, there is no su
h test that 
ould be used in pra
ti
eyet.Starting however from this assumption, we 
an 
ompare the distributions of two ser-vi
es in any area of Rennes, or 
ompare the distribution of a parti
ular servi
e with thedistribution of houses by the means of statisti
al hypotheses tests of proportionality orequality of the intensities of two Poisson pro
esses.2 Two-sample problems for spatial Poisson pro
essesLet us 
onsider a measurable subspa
e X of R

2, equipped with the Lebesgue measure ν.Let N1 and N2 be two independent Poisson pro
esses observed on X, whose intensitieswith respe
t to ν are denoted by s1 and s2, and whose numbers of points are respe
tivelydenoted by |N1| and |N2|. Let now (X1, . . . , X|N1|) and (Y1, . . . , Y|N2|) denote the pointsof the pro
esses N1 and N2 respe
tively.Given the observation of N1 and N2, we �rst address the question of testing the nullhypothesis (Hp
0 ): "s1 and s2 are proportional" against the alternative (Hp

1 ): "they arenot". Some papers deal with the problem of testing (Hp
0 ): "s1/s2 is 
onstant" against"it is in
reasing", su
h as [5℄ and [10℄. Though the alternative "s1/s2 is in
reasing" isusual in reliability 
ontexts, it has no sense in our 
ontext of servi
es representativenessstudy. We will use other tests, that will be 
alled here "
onditional" tests. Noti
e that

(Hp
0 ) is true if and only if s1/

∫

X
s1(x)dνx = s2/

∫

X
s2(x)dνx. Therefore, from De�nition 1of Poisson pro
esses, one dedu
es that testing (Hp

0 ) against (Hp
1 ) amounts to testingdistributions equality for the two i.i.d. samples (X1, . . . , . . . , Xn1) and (Y1, . . . , Yn2) withrespe
tive sizes n1 and n2 obtained when 
onsidering N1 and N2 
onditionally to theevent "|N1| = n1 and |N2| = n2". Many pro
edures have been and are still developedto solve this 
lassi
al i.i.d. two-sample problem. Of 
ourse, we �rst think about thefamous Kolmogorov-Smirnov and Cramer von Mises tests. However, while these testsare very simple to understand and implement when the observations are univariate, theirextensions to multivariate observations are not so 
lear. One 
an a
tually generalize theKolmogorov-Smirnov statisti
 for instan
e in many di�erent ways, generally expressed insu
h a form:

TKS = sup
θ∈Θ

∣

∣

∣

∣

∣

1

n1

n1
∑

i=1

θ(Xi) −
1

n2

n2
∑

j=1

θ(Yj)

∣

∣

∣

∣

∣

,where Θ is a parti
ular 
lass of measurable fun
tions: X → R. Note that when X = Rand Θ is the set of indi
ators of 
ells (−∞, t], this exa
tly redu
es to the well-knownKolmogorov-Smirnov statisti
. In this 
ase, sin
e the underlying distributions of the Xi'sand the Yj's are assumed to be atomless, this statisti
 is distribution free under the nullhypothesis, and the 
riti
al values of the 
orresponding test are easy to 
ompute. In the
ase where X ⊂ R
2, this is not so simple. First, the 
hoi
e of the 
lass Θ is not obvious.Then, the fa
t that the resulting statisti
 is in general not distribution free under thenull hypothesis also poses a 
ru
ial question: whi
h 
riti
al values 
an we take here?3



This question is usually solved through general bootstrap approa
hes in
luding Efron'sbootstrap or permutation bootstrap approa
hes (see [19℄ for instan
e). Friedman andRafsky proposed asymptoti
ally distribution free multivariate extensions of Kolmogorov-Smirnov and Wald-Wolfowitz testing statisti
s under the null hypothesis. We 
hose toinvestigate a new version of the old Cramer test proposed by Baringhaus and Franz[2℄, whi
h has appeared to be 
ompetitive in the univariate 
ase, regarding Kolmogorov-Smirnov and Cramer von Mises tests, and the re
ent Kernel Maximum Mean Dis
repan
ytest proposed by Gretton et al. [14℄, whi
h has been 
ompared to Friedman and Rafsky'stest among others.We se
ondly address the question of testing (H0): "s1 = s2" against the alternative
(H1): "s1 6= s2". Many papers deal with this two-sample problem for homogeneousPoisson pro
esses su
h as, among others, the histori
al ones of [20℄, [8℄, [13℄, and [21℄, orthe more re
ent ones of [16℄, [18℄, [7℄, and [6℄. However, very few papers fo
us on thistwo-sample problem for non-homogeneous Poisson pro
esses, whi
h is 
onsidered here. Toour knowledge, the paper by Fromont, Laurent, Reynaud-Bouret [12℄ is the only one toaddress this problem exa
tly. Of 
ourse, any level α test of (Hp

0 ) against (Hp
1 ) is also a level

α test of (H0) against (H1), but the resulting test may be too 
onservative. Hen
e, whenthe problem of testing (H0) against (H1) is the only one to be 
onsidered, we ex
lusivelyinvestigate the tests proposed in [12℄.We detail all the investigated tests in the two following se
tions.Let Ps1,s2 be the joint distribution of (N1, N2). We set for any event A based on
(N1, N2), P(H0)(A) = sups1,s2,s1=s2

Ps1,s2(A).2.1 Conditional tests from the 
lassi
al i.i.d. two-sample problemLet n1 and n2 be some positive integers. From De�nition 1, we know that 
onditionallyto the event "|N1| = n1 and |N2| = n2", (X1, . . . , X|N1|) and (Y1, . . . , Y|N2|) have the samedistribution as two i.i.d. samples (X1 . . . , Xn1) and (Y1, . . . , Yn2) with respe
tive densities
s̃1 = s1/

∫

X
s1(x)dνx and s̃2 = s2/

∫

X
s2(x)dνx w.r.t. the Lebesgue measure ν on X. Giventhe observation of N1 and N2, we here 
onsider the problem of testing (Hp

0 ): "s1 and s2 areproportional" against (Hp
1 ): "they are not", whi
h amounts to testing the null hypothesisof equality between the distributions of the i.i.d. samples (X1 . . . , Xn1) and (Y1, . . . , Yn2).2.1.1 Cramer testBaringhaus and Franz [2℄ start from a result stating that if ‖.‖ denotes the Eu
lideannorm of R

d, X̃, X̃ ′ are random ve
tors of R
d with the same density s̃1 w.r.t. the Lebesguemeasure, with �nite expe
tation, Ỹ , Ỹ ′ are random ve
tors of R

d with the same density
s̃2, with �nite expe
tation, and if X̃, X̃ ′, Ỹ , Ỹ ′ are independent, then

2E

[

‖X̃ − Ỹ ‖
]

− E

[

‖X̃ − X̃ ′‖
]

− E

[

‖Ỹ − Ỹ ′‖
]

≥ 0.
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Moreover, the equality is true if and only if s̃1 = s̃2 (see Theorem 2.1 in [2℄). This resultand the law of large numbers lead to the following testing statisti
:
TCramer =

n1n2

n1 + n2

(

1

n1n2

n1
∑

i=1

n2
∑

j=1

‖Xi − Yj‖ −
1

2n2
1

n1
∑

i,k=1

‖Xi −Xk‖

− 1

2n2
2

n2
∑

j,k=1

‖Yj − Yk‖
)

=
n1n2

n1 + n2

(

2

n1n2

n1
∑

i=1

n2
∑

j=1

ϕ
(

‖Xi − Yj‖2
)

− 1

n2
1

n1
∑

i,k=1

ϕ
(

‖Xi −Xk‖2
)

− 1

n2
2

n2
∑

j,k=1

ϕ
(

‖Yj − Yk‖2
)

)

,with ϕ(t) =
√
t/2. The authors then suggest to reje
t the null hypothesis (Hp

0 ) when
TCramer is large, that is in fa
t larger than a 
riti
al value to de�ne. Contrary to the
lassi
al Kolmogorov-Smirnov or Cramer-von Mises testing statisti
s in the univariate
ontext, and to Friedman-Rafsky testing statisti
 in the multivariate 
ontext, the statisti

TCramer is not distribution free under the null hypothesis. Hen
e, given a pres
ribed level
α, the (1 − α) quantile of TCramer under (Hp

0 ) 
an not be taken as 
riti
al value forthe test. Baringhaus and Franz propose to 
onsider either an Efron's bootstrapped or apermutation bootstrapped version T ∗
Cramer of the statisti
 TCramer given the pooled sample

Z = (X1, . . . , Xn1, Y1, . . . , Yn2). As explained in details in [23℄ for instan
e, they 
onsiderthe (1 − α) quantile of T ∗
Cramer given Z, that we denote here by c∗Cramer(1 − α). Thetest proposed by Baringhaus and Franz [2℄ then 
onsists in reje
ting the null hypothesis

(Hp
0 ) when TCramer is larger than c∗Cramer(1−α). Let us introdu
e the 
orresponding testfun
tion, that we denote by ΦCramer:

ΦCramer = 1TCramer>c∗
Cramer

(1−α). (2.1)Baringhaus and Franz 
all their test Cramer test as Cramer [9℄ already proposed a similartesting statisti
 for the one-sample goodness-of-�t problem in the univariate 
ontext. Theyuse asymptoti
 arguments from [23℄ to validate the bootstrap approa
h. They thus provethat their test is asymptoti
ally of level α, and that it is 
onsistent against any �xedalternative. They �nally estimate the powers of their test mainly under univariate andmultivariate normal lo
ation and dispersion alternatives, and they 
ompare these powerswith the ones of the usual parametri
 t-test and F -test, Kolmogorov-Smirnov and Cramervon Mises tests in the univariate 
ontext, and with the ones of the Hotelling's T 2-test andBartlett's LR-test in the multivariate 
ontexts. They 
on
lude that Cramer test performswell under su
h alternatives.The test ΦCramer is furthermore implemented in the software environment R in thefun
tion 
ramer.test of the 
ramer pa
kage, where various options are available. Amongthese options, the user 
an 
hoose to apply the test ΦCramer de�ned in (2.1), but alsoto apply another version of the test whi
h is de�ned in the same way as in (2.1), just
hanging ϕ in the se
ond expression of TCramer. We will only 
onsider in the followingtwo 
ases: the original test denoted by ΦCramer, and the test 
orresponding to the 
hoi
eof ϕ(t) = 1 − exp(−t/2) whi
h was proposed by Bahr [1℄ and whi
h is hen
e de�ned by
ΦBahr = 1TBahr>c∗

Bahr
(1−α), (2.2)5



where
TBahr =

n1n2

n1 + n2

(

2

n1n2

n1
∑

i=1

n2
∑

j=1

ϕ
(

‖Xi − Yj‖2
)

− 1

n2
1

n1
∑

i,k=1

ϕ
(

‖Xi −Xk‖2
)

− 1

n2
2

n2
∑

j,k=1

ϕ
(

‖Yj − Yk‖2
)

)

,with ϕ(t) = 1− exp(−t/2), and c∗Bahr(1−α) is a 
riti
al value obtained from a bootstrapapproa
h. The user may also 
hoose either Efron's bootstrap or permutation bootstrapto determine the 
riti
al values of the tests.2.1.2 Kernel Maximum Mean Dis
repan
y testLet Θ be a 
lass of fun
tions θ : X → R and let X̃ and Ỹ be two independent randomvariables on X with respe
tive densities s̃1 and s̃2 w.r.t. ν. Gretton et al. [14℄ de�ne theMaximum Mean Dis
repan
y (MMD) over Θ as:
MMD[Θ, s̃1, s̃2] = sup

θ∈Θ

(

Es̃1 [θ(X̃)] − Es̃2 [θ(Ỹ )]
) (2.3)

= sup
θ∈Θ

(
∫

X

θ(x)s̃1(x)dνx −
∫

X

θ(y)s̃2(y)dνy

)

. (2.4)Noti
ing that when Θ is the spa
e of bounded 
ontinuous fun
tions on X,MMD[Θ, s̃1, s̃2] =
0 if and only if s̃1 = s̃2, any "good" estimator of MMD[Θ, s̃1, s̃2] or MMD[Θ, s̃1, s̃2]

2 forinstan
e may be a pertinent testing statisti
. Sin
e one 
an reasonably not work inpra
ti
e with the spa
e of bounded 
ontinuous fun
tions on X, Gretton et al. [14℄ sug-gest to 
onsider other 
lasses of fun
tions Θ, whi
h are ri
h enough to guarantee that
MMD[Θ, s̃1, s̃2] = 0 if and only if s̃1 = s̃2, but restri
tive enough for the resulting testto be 
onsistent. Namely, they 
onsider the unit balls of universal Reprodu
ing KernelHilbert Spa
es. Universal RKHSs are de�ned in [14℄ and it is proved in parti
ular in [22℄that the RKHS asso
iated with the usual Gaussian kernel is universal. The authors a
tu-ally prove that when Θ is the unit ball of su
h a universal RKHS HK de�ned on X withasso
iated positive de�nite kernel K and representation fun
tion ψ, then the equivalen
e
MMD[Θ, s̃1, s̃2] = 0 ⇔ s̃1 = s̃2 holds. Moreover, from a lemma in [4℄, one has in this
ase that

MMD[Θ, s̃1, s̃2]
2 = ‖Es̃1 [ψ(X̃)] − Es̃2 [ψ(Ỹ )]‖2

HK

= Es̃2K(X̃, X̃ ′) + Es̃2K(Ỹ , Ỹ ′) − 2Es̃1,s̃2K(X̃, Ỹ ),where X̃ ′ and Ỹ ′ are independent 
opies of X̃ and Ỹ , independent from X̃ and Ỹ , and
‖.‖HK

is the norm in HK . Hen
e an unbiased estimator of MMD[Θ, s̃1, s̃2]
2 is easilyobtained when n1 = n2 as

TKMMD,n1 =
1

n1(n1 − 1)

n1
∑

i6=j=1

(

K(Xi, Xj) +K(Yi, Yj) −K(Xi, Yj) −K(Xj , Yi)
)

. (2.5)One 
an also always (that is also when n1 6= n2) 
onsider the empiri
al estimator of
MMD[Θ, s̃1, s̃2] de�ned by
TKMMD,n1,n2 =

(

1

n2
1

n1
∑

i,k=1

K(Xi, Xk) +
1

n2
2

n2
∑

j,k=1

K(Yj, Yk) −
2

n1n2

n1
∑

i=1

n2
∑

j=1

K(Xi, Yj)

)
1
2

,(2.6)6



and 
hoose one of these estimators as testing statisti
. Given a pres
ribed level α, Gret-ton et al. [14℄ propose to reje
t the null hypothesis (Hp
0 ) when TKMMD,n1 is larger thana 
riti
al value c∗KMMD,n1

(1− α) or when TKMMD,n1,n2 is larger than c∗KMMD,n1,n2
(1−α).

c∗KMMD,n1
(1 − α) and c∗KMMD,n1,n2

(1 − α) may be dedu
ed from di�erent approa
hes.
c∗KMMD,n1

(1 − α) may be determined from a uniform 
onvergen
e bound for TKMMD,n1based on Hoe�ding's 
on
entration inequality under the null hypothesis or from an esti-mation of the (1−α) asymptoti
 quantile of TKMMD,n1 under the null hypothesis based oneither Efron's bootstrap approa
h given the pooled sample Z or a moments approximationapproa
h. c∗KMMD,n1,n2
(1−α) may also be determined from a uniform 
onvergen
e boundfor TKMMD,n1,n2 based on Hoe�ding's 
on
entration inequality under the null hypothesis,or a bootstrap approa
h.Let us introdu
e the 
orresponding test fun
tions:

ΦKMMD,n1 = 1TKMMD,n1
>c∗

KMMD,n1
(1−α), (2.7)and

ΦKMMD,n1,n2 = 1TKMMD,n1,n2
>c∗

KMMD,n1,n2
(1−α). (2.8)Note that when K is the usual Gaussian kernel with a bandwidth equal to 1 that iswhen K(x, x′) = exp(−‖x − x′‖2/2), and when the 
riti
al value c∗KMMD,n1,n2

(1 − α) isobtained from a bootstrap method, ΦKMMD,n1,n2 is very 
lose to ΦBahr. Indeed, in this
ase,
T 2

KMMD,n1,n2
=
n1 + n2

n1n2
TBahr.2.2 Adaptive non parametri
 multiple testing pro
eduresLet us now fo
us ont he problem of testing (H0): "s1 = s2" against the alternative

(H1): "s1 6= s2". We here give a short des
ription of the testing pro
edures proposed byFromont, Laurent, Reynaud-Bouret[12℄. For more details, we refer to the original paper.We denote by ||.||ν the L
2(X, dν)-norm, and by < ., . >ν the s
alar produ
t asso
iatedwith ||.||ν on X.We assume as in [12℄ that s1 and s2 are both in L

∞(X) ∩ L
1(X, dν). Noti
ing thatthis in parti
ular implies that s1 and s2 belong to L

2(X, dν), Fromont, Laurent, Reynaud-Bouret propose to use non parametri
 estimators of ‖f − g‖2
ν as testing statisti
s. Forinstan
e, 
onsidering a �nite dimensional subspa
e S of L

2(X, dν) and an orthonormalbasis {ϕλ, λ ∈ Λ} of S for < ., . >ν , they introdu
e the random variable T̂ de�ned by
T̂ =

∑

λ∈Λ

|N |
∑

i6=i′=1

ϕλ(Zi)ϕλ(Zi′)ε
0
i ε

0
i′,where (Z1, . . . , Z|N |) denotes the points of the pooled Poisson pro
ess N 
omposed of thepoints from both N1 and N2 (with size |N | = |N1|+ |N2|), ε0

i = 1 when Zi belongs to N1and ε0
i = −1 when Zi belongs to N2. Then T̂ is an unbiased estimator of ||ΠS(f − g)||2ν,where ΠS is the orthogonal proje
tion onto S, and it may be a relevant 
hoi
e of testingstatisti
. Introdu
ing the 
orresponding wild bootstrapped statisti
 de�ned as

T̂ ε =
∑

λ∈Λ

|N |
∑

i6=i′=1

ϕλ(Zi)ϕλ(Zi′)εiεi′7



where (εi)i∈N is a sequen
e of i.i.d. Radema
her variables independent of N , Fromont,Laurent, Reynaud-Bouret prove that 
onditionally to N , under (H0), the distributionof T̂ ε is exa
tly the same as the distribution of T̂ . Hen
e, given a pres
ribed level αin (0, 1), they introdu
e the (1 − α) quantile of T̂ ε 
onditionally to N denoted by q(N)
1−αand they reje
t (H0) when T̂ > q

(N)
1−α. The 
onditional quantile q(N)

1−α hen
e presents thefollowing advantages: �rst it leads to an exa
t level α test, and se
ondly, it 
an be easilyapproximated by a 
lassi
al Monte Carlo method.Starting from this �rst pro
edure, Fromont, Laurent, Reynaud-Bouret generalize it bynoti
ing that the fun
tion: X
2 → R, (z, z′) 7→∑

λ∈Λ ϕλ(z)ϕλ(z
′) is known as a proje
tionkernel in Learning Theory. They propose then to 
onsider any symmetri
 kernel fun
tion

K 
hosen among the three possibilities des
ribed below, and to introdu
e the testingstatisti

T̂K =

|N |
∑

i6=i′=1

K(Zi, Zi′)ε
0
i ε

0
i′. (2.9)As above, 
onsidering its wild bootstrapped version

T̂ ε
K =

|N |
∑

i6=i′=1

K(Zi, Zi′)εiεi′, (2.10)and the (1−α) quantile of T̂ ε
K 
onditionally to N that they denote by q(N)

K,1−α, they proposeto reje
t (H0) when
T̂K > q

(N)
K,1−α.Let us give below the three possible 
hoi
es for K.1. A �rst 
hoi
e for K is a symmetri
 kernel fun
tion based on an orthonormal family:

K(z, z′) =
∑

λ∈Λ

ϕλ(z)ϕλ(z
′),where {ϕλ, λ ∈ Λ} is an orthonormal family for < ., . >ν .2. A se
ond 
hoi
e for K is a kernel fun
tion based on an approximation kernel k: for

z = (z1, z2), z′ = (z′1, z
′
2) in R

2,
K(z, z′) =

1

h1h2
k

(

z1 − z′1
h1

,
z2 − z′2
h2

)

,where k is an approximation kernel in L
2(R2), and su
h that k(−z) = k(z), and

h = (h1, h2) is a ve
tor of 2 positive bandwiths.3. A third 
hoi
e for K is a learning or Mer
er kernel su
h that
K(z, z′) = 〈ψ(z), ψ(z′)〉HK

,where ψ and HK are respe
tively a representation fun
tion and a RKHS asso
iatedwith K. Here 〈., .〉HK
denotes the s
alar produ
t of HK .

8



This test 
ould be viewed as a version of the test of Gretton et al. [14℄ adapted to thePoisson framework. However, the 
riti
al value is here not 
hosen in the same way as in[14℄. Fromont, Laurent, Reynaud-Bouret [12℄ a
tually propose a 
riti
al value leading toa test with good theoreti
al non asymptoti
 performan
e in the sense that it is exa
tly oflevel α and that it also a
hieves a pres
ribed probability of se
ond kind error for s1 and
s2 that are not very far from ea
h other.Of 
ourse, the question of the 
hoi
e of the kernel fun
tion K is 
ru
ial here, sin
edi�erent kernel fun
tions may lead to very di�erent performan
e. While Gretton etal. [14℄ 
alibrate the parameters of the 
hosen kernel fun
tion by a heuristi
 approa
h,Fromont, Laurent, Reynaud-Bouret [12℄ over
ome this di�
ulty by 
onsidering an aggre-gation method spe
i�
 to adaptive testing. Instead of taking a single kernel fun
tion, theypropose to introdu
e a �nite 
olle
tion of kernel fun
tions {Km, m ∈ M}, 
hosen amongthe possibilities listed above. For every m in M, let T̂Km

and T̂ ε
Km

be respe
tively de�nedby (2.9) and (2.10) with K = Km, and let {wm, m ∈ M} be a 
olle
tion of positivenumbers su
h that ∑m∈M e−wm ≤ 1. For u ∈ (0, 1), let q(N)
m,1−u be the (1 − u) quantile of

T̂ ε
Km


onditionally to the pooled pro
ess N . The test proposed in [12℄ reje
ts (H0) whenthere exists at least one m in M su
h that
T̂Km

> q
(N)

m,1−u
(N)
α e−wmwhere u(N)

α is de�ned as
u(N)

α = sup

{

u > 0,P

(

sup
m∈M

(T̂ ε
Km

− q
(N)
m,1−ue−wm ) > 0

∣

∣

∣

∣

∣

N

)

≤ α

}

. (2.11)Let ΦAgg be the 
orresponding test fun
tion de�ned by
ΦAgg = 1

supm∈M

(

T̂Km−q
(N)

m,1−u
(N)
α e−wm

)

>0
. (2.12)Note that given the observation of the pooled pro
essN , u(N)

α and the quantiles q(N)

m,1−u
(N)
α e−wm
an be estimated by a Monte Carlo pro
edure.This multiple testing pro
edure has been 
onstru
ted to be exa
tly of level α that is

P(H0) (ΦAgg = 1) ≤ α.Then it is proved to satisfy ora
le type inequalities, and when adequate approximationkernels are 
hosen, to be adaptive in the minimax sense over multivariate Sobolev andanisotropi
 Nikol'skii-Besov balls.2.3 Simulation studyWe aim here at evaluating the pra
ti
al performan
e in terms of levels and powers of thefour tests ΦCramer, ΦBahr, ΦKMMD,n1,n2 and ΦAgg de�ned by (2.1), (2.2), (2.8) and (2.12).We 
onsider various densities with respe
t to the Lebesgue measure on X = [0, 1]2 or
X = R

2, that are uniform and normal densities, and deviations from them. Let us thusintrodu
e the following notations:
fa,ε(x) = 1(0,1)2(x) + ε1(0,a)2(x) − ε1(a,2a)2(x),

fµ(x) =
1

2 × 0.152π
exp

(

‖x− µ‖2/(2 × 0.152)
)

.9



We �rst 
hoose several parameters (a, ε) in [0, 0.5]× [0, 1] and µ in R and we realize 1000simulations of two independent Poisson Pro
esses N1 and N2 with respe
tive intensities
200f0,0 and 200fa,ε or 200f0.5 and 200fµ w.r.t. the Lebesgue measure ν of R

2.All the tests 
onsidered here are applied with a level α = 0.05.Working 
onditionally to the event "|N1| = n1 and |N2| = n2", we 
onsider ΦCramerand ΦBahr with Efron's bootstrap method with 1000 bootstrap repli
ates, whi
h are im-plemented in the R fun
tion 
ramer.test of the pa
kage 
ramer. Then, we 
onsider
ΦKMMD,n1,n2 with a Gaussian kernel with bandwidth σ sele
ted from a heuristi
 approa
hof Gretton et al. [14℄, and we run it with the Matlab program given in open a

ess by theauthors.We furthermore 
onsider ΦAgg with a family of kernel fun
tions �rst based on thestandard Gaussian approximation kernel kG and se
ondly based on the Epane
hnikovapproximation kernel kE, where: kG(z) = exp(−‖z‖2/2) for all z ∈ R

2 and kE(z1, z2) =
(1 − z2

1)(1 − z2
2)1‖(z1,z2)‖≤1. For both tests, we 
onsider the 
olle
tion of bandwidths

{hm, m ∈ M} = {1/24, 1/16, 1/12, 1/8, 1/4, 1/2} and the asso
iated 
olle
tion of kernelfun
tions {Km, m ∈ M} given for all m ∈ M either by Km(z, z′) = 1
h2

m
kG

(

z−z′

hm

) or
Km(z, z′) = 1

h2
m
kE

(

z−z′

hm

). We take for both tests wm = 1/|M| = 1/6, and we denotethem respe
tively by ΦAgg,G and ΦAgg,E . Let us re
all that the tests ΦAgg,G and ΦAgg,Ereje
t the null hypothesis (H0) when there exists m in M su
h that
T̂Km

≥ q
(N)

m,1−u
(N)
α e−wmwhere N 
orresponds to the pooled pro
ess obtained from N1 and N2, and u(N)

α is de�nedin (2.11). Hen
e, for ea
h observation of the pooled pro
ess N , we have to estimate u(N)
αand the quantiles q(N)

m,1−u
(N)
α e−wm

. These estimations are done as in [12℄ by 
lassi
al MonteCarlo methods based on the simulation of 400000 independent samples of size |N | of i.i.d.Radema
her variables. Half of the samples is used to estimate the distribution of ea
h T̂ ε
Km

.The other half is used to approximate the 
onditional probabilities o

urring in (2.11).The point u(N)
α is obtained by di
hotomy, su
h that the estimated 
onditional probabilityo

urring in (2.11) is less than α, but as 
lose as possible to α. We implemented the testwith Matlab from Fromont, Laurent, Reynaud-Bouret [12℄'s programs.For ea
h of the 1000 simulations of the Poisson Pro
esses N1 and N2, we determinethe 
on
lusions of the tests ΦCramer, ΦBahr, ΦKMMD,n1,n2, ΦAgg,G and ΦAgg,E. The levelsor powers of the tests are estimated by the number of reje
tions for these tests dividedby 1000. The results are given in the following table.Densities ΦCramer ΦBahr ΦKMMD,n1,n2 ΦAgg,G ΦAgg,E

(f0,0, f0,0) 0.052 0.052 0.06 0.0485 0.046
(f0,0, f0.25,0.8) 0.10 0.09 0.15 0.17 0.18
(f0,0, f0.25,0.9) 0.10 0.09 0.18 0.23 0.21
(f0,0, f0.25,1) 0.14 0.11 0.21 0.26 0.25
(f0.5, f0.5) 0.048 0.046 0.043 0.0485 0.046
(f0.5, f0.52) 0.36 0.37 0.26 0.21 0.18
(f0.5, f0.54) 0.90 0.91 0.83 0.69 0.6610



Comments. The �rst thing we 
an noti
e here is that the tests ΦCramer, ΦBahr , and
ΦKMMD,n1,n2 are more powerful than ΦAgg,G and ΦAgg,E when the alternative is 
omposedof intensities with a smooth di�eren
e. On the 
ontrary, ΦAgg,G and ΦAgg,E are morepowerful than ΦCramer, ΦBahr, and ΦKMMD,n1,n2 when the alternative is 
omposed ofintensities with very lo
alized di�eren
es. We are not really surprised here sin
e the testsdeveloped by Fromont, Laurent and Reynaud-Bouret were pre
isely 
onstru
ted to beadaptive over 
lasses of possibly very irregular alternatives. We 
ould surely improve thepowers of these tests for alternatives 
omposed of intensities with smooth di�eren
es by
onsidering another family of bandwidths or even another family of kernels.3 Studies on spatial representativeness of servi
esThe data we study here are reported in two tables. The �rst table 
onsists in the (x, y)-
oordinates on a map of the 
ity of Rennes of all houses, and the number of �ats perhouses (when needed) in 2007. The se
ond table 
onsists in the (x, y)-
oordinates onthe same map of Rennes of various servi
es su
h as administrative o�
es, shops, s
hools,artisans, restaurants, medi
al servi
es, so
ial servi
es, 
ultural servi
es, with an INSEE
ode ("A101",...,"D237") giving the pre
ise type of ea
h servi
e.3.1 Comparisons for various pairs of servi
esWe �rst aim at 
omparing the distributions of various servi
es. For sake of simpli
ity,we res
ale the (x, y) original 
oordinates, so that (x, y) ∈ [0, 1]2. We represent the pointsthus obtained for servi
es on the following �gure.
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Figure 1: Representation of all servi
es11



We now 
onsider various pairs of servi
es, where ea
h pair is denoted by Servi
e1and Servi
e2. The points de�ned by the res
aled 
oordinates 
orresponding to Servi
e1are assumed to be a Poisson pro
ess N1 with intensity s1 with respe
t to the Lebesguemeasure on X = [0, 1]2, and the points de�ned by the res
aled 
oordinates 
orrespondingto Servi
e2 are assumed to be a Poisson pro
ess N2 with intensity s2 with respe
t to theLebesgue measure on X.The points of the Poisson pro
esses 
orresponding to ea
h 
onsidered pair of servi
esare represented in the following �gures.
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Figure 2: Representation of publi
 and private se
ondary s
hools
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Figure 3: Representation of general medi
ine do
tors and pharma
ies
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Figure 4: Representation of pharma
ies and medi
al analysis laboratories
13



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X−coordinate

Y
−

co
or

di
na

te

Pediatrics
Gynecology−obstetrics

Figure 5: Representation of pediatri
ians and obstetri
ians
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Figure 6: Representation of ophtalmologists and opti
ians
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Figure 7: Representation of 
lothing and shoe shops
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Figure 8: Representation of 
lothing shops and mini-markets
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Figure 9: Representation of mini-markets and restaurants
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Figure 10: Representation of baker's and but
her's shops
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Figure 11: Representation of hairdressers and perfume shops3.1.1 Conditional testsIn this se
tion, we fo
us on the problem of testing (Hp
0 ) "s1 and s2 are proportional"against (Hp

1 ) "they are not" for the above pairs of servi
es. We apply the 
onditionaltests whi
h are des
ribed in Se
tion 2.1 and studied in Se
tion 2.3.For ea
h 
onsidered pair of servi
es, we work here 
onditionally to the event "|N1| = n1and |N2| = n2". The tests ΦCramer and ΦBahr de�ned by (2.1) and (2.2) are applied witha level α = 0.05, and with an Efron's bootstrap approximation with 100000 bootstraprepli
ates. The test ΦKMMD,n1,n2 de�ned by (2.8) is applied with a level α = 0.05, withthe method of moments approximation as re
ommended by the authors for moderatelysmall data sets, and with the default Gaussian kernel (whose bandwidth σ is heuristi
allysele
ted). The results are given in the following table. Ea
h row 
orresponds to a pair ofservi
es. Reje
tion of the null hypothesis is denoted by 1, while a

eptan
e is denoted by 0.Estimations of the p-values of the tests ΦCramer and ΦBahr are given between parentheses,and the heuristi
 
hoi
e of σ is given between bra
kets for the test ΦKMMD,n1,n2.Servi
es ΦCramer ΦBahr ΦKMMD,n1,n2Publi
 (C201) / Private (C202) se
ond. s
hools 0(0.60) 0(0.75) 0[σ = 0.22℄General medi
ine (D201) / Pharma
y (D301) 0(0.99) 0(0.89) 0[σ = 0.21℄Pharma
y (D301) / Medi
al analysis lab. (D302) 0(0.64) 0(0.46) 0[σ = 0.23℄Pediatri
s (D210) / Gyne
ology-obstetri
s (D205) 0(0.09) 0(0.21) 0[σ = 0.23℄Ophtalmologist (D208) / Opti
ian (D234) 0(0.60) 0(0.71) 0[σ = 0.18℄Clothing shop (B302) / Shoe shop (B304) 0(0.39) 0(0.31) 0[σ = 0.05℄Clothing shop (B302) / Mini-market (B201) 1(0) 1(0) 1[σ = 0.22℄Mini-market (B201) / Restaurant (A504) 1(0) 1(0) 1[σ = 0.23℄Baker's (B203) / But
her's (B204) shops 0(0.99) 0(0.95) 0[σ = 0.18℄Hairdressing (A501) / Perfume shop (B310) 0(0.53) 0(0.57) 0[σ = 0.17℄17



3.1.2 Adaptive testsWe fo
us now on the problem of testing (H0) "s1 = s2" against (H1) "s1 6= s2" for theabove pairs of servi
es. We apply the tests Φagg,G and Φagg,E des
ribed in Se
tion 2.2 andalso studied in Se
tion 2.3.The results are given in the following table. Ea
h row 
orresponds to a pair of servi
es.Reje
tion of the null hypothesis for a level of signi�
an
e α = 0.05 is denoted by 1, whilea

eptan
e is denoted by 0.Servi
es Φagg,G Φagg,EPubli
 (C201) / Private (C202) se
ond. s
hools 0 0General medi
ine (D201) / Pharma
y (D301) 1 1Pharma
y (D301) / Medi
al analysis lab. (D302) 1 1Pediatri
s (D210) / Gyne
ology-obstetri
s (D205) 1 1Ophtalmologist (D208) / Opti
ian (D234) 0 0Clothing shop (B302) / Shoe shop (B304) 1 1Clothing shop (B302) / Mini-market (B201) 1 1Mini-market (B201) / Restaurant (A504) 1 1Baker's (B203) / But
her's (B204) shops 1 1Hairdressing (A501) / Perfume shop (B310) 1 13.1.3 CommentsWe mainly obtain results that are in a

ordan
e with the intuition we 
ould have lookingat the representations of the 
onsidered servi
es pairs. But noti
e that in some 
ases, thesizes of the Poisson pro
esses 
orresponding to both servi
es are small or moderately small,though the 
onditional tests 
onsidered here were essentially validated by asymptoti
alarguments. In other 
ases, the sizes of the Poisson pro
esses are very di�erent, with arather small one, and the tests seem to be sensitive to su
h sizes 
onsiderations. Theseare the main limits of the present study. Surely, our 
onsidering the data as Poissonpro
esses on the whole spa
e [0, 1]2, and 
omparison tests for su
h pro
esses, will haveto be revised. The parti
ular stru
ture of the data, that are distributed on a dis
retenetwork of addresses of a network of streets will have to be taken into a

ount. The testsdeveloped by Gretton et al. and Fromont, Laurent, Reynaud-Bouret are based on kernelfun
tions. Kernel fun
tions are pre
isely some of the most famous 
urrent tools to ta
kledata with parti
ular stru
tures. For instan
e, 
onsidering the same tests as above, butwith a kernel spe
i�
ally adapted to the stru
ture involved here (as done for instan
e forgraphs, trees, or images analysis) will be an interesting tra
k to explore. A fundamentalstep for the 
onstru
tion of the test will also 
onsist in 
hoosing the best mathemati
alstru
ture to modelize the data spa
e.3.2 Representativeness of various servi
es with respe
t to housesThe question we ta
kle in this se
tion is: "Are servi
es well distributed with respe
t tothe population in some parti
ular areas of the 
ity of Rennes?". A natural idea to answerthis question is to use 
onditional tests as explained above, to test (Hp
0 ) against (Hp

1 ) fortwo Poisson pro
esses N1 and N2, where N1 modelizes the 
oordinates of houses while N2modelizes the 
oordinates of a servi
e. 18



The main drawba
ks of su
h a use of 
onditional tests are the following ones. First, we
annot here take into a

ount the number of a

ommodations per address sin
e a Poissonpro
ess 
an not 
ontain several times the same point. Se
ondly, in mu
h areas of the 
ity,servi
es are far less numerous than houses, and we have seen that it 
an be a drawba
kfor the use of 
onditional tests. We therefore 
hoose to 
onsider here only a small area ofthe 
enter of Rennes, where several servi
es may be rather numerous.Let us represent some of these servi
es with respe
t to houses.
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Figure 12: Representation of 
lothing shops w. r. t. houses in a small 
enter area
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Figure 13: Representation of shoe shops w. r. t. houses in a small 
enter area
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Figure 14: Representation of restaurants w. r. t. houses in a small 
enter area
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Figure 15: Representation of general medi
ine do
tors w. r. t. houses in a small 
enterarea
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Figure 16: Representation of banks w. r. t. houses in a small 
enter area21



The obtained results are given in the following table. Reje
tion of the null hypothesisfor a level of signi�
an
e α = 0.05 is denoted by 1, while a

eptan
e is denoted by 0.Estimations of the p-values of the tests ΦCramer and ΦBahr are given between parentheses,and the heuristi
 
hoi
e of σ is given between bra
kets for the test ΦKMMD,n1,n2.Servi
es ΦCramer ΦBahr ΦKMMD,n1,n2Clothing shop (B302) 0(0.16) 0(0.20) 0[σ = 0.01℄Shoe shop (B304) 1(0.018) 1(0.029) 1[σ = 0.01℄Restaurant (A504) 0(0.09) 0(0.23) 1[σ = 0.02℄General medi
ine (D201) 0(0.18) 0(0.32) 1 [σ = 0.15℄Bank (A203) 0(0.51) 0(0.71) 1[σ = 0.14℄Comments. The three tests give 
orroborating 
on
lusions for 
lothing and shoe shops,hen
e we 
an trust these 
on
lusions that are: the null hypothesis is a

epted for 
lothingshops while it is reje
ted for shoe shops for a level of signi�
an
e α = 0.05. These
on
lusions are in a

ordan
e with the intuition we 
ould have just looking at the �guresrepresenting the distribution of both shops. As 
on
erns restaurants, the 
on
lusions ofthe Cramer and Bahr's tests di�er from the 
on
lusion of Gretton et al.'s test. This maybe explained by the low estimated p-values for the �rst tests: the test of Gretton et al.reje
ts the null hypothesis, and with a level α = 0.1, the Cramer test would also reje
t it.As for general medi
ine and banks, the 
on
lusions of the tests are not 
orroborating, butone 
an not here impute this to low p-values for the Cramer and Bahr's test. We 
onje
turethat the tests su�er here from the too small size of the Poisson pro
esses 
orrespondingto these servi
es. Indeed, the whole spa
e [0, 1]2 is 
onsidered here, whereas our data arenot distributed on this whole spa
e, but on a dis
rete network of points in this spa
e, orat least on a network of streets. This is again a question to be gone into more deeply,from both pra
ti
al and theoreti
al point of views.4 Con
lusionsWe have �rst investigated the performan
e of the tests proposed by Bahr [1℄, Baringhausand Franz [2℄, Gretton et al. [14℄ and Fromont, Laurent, Reynaud-Bouret [12℄ in asimulation study. As expe
ted, when the number of simulated data is nearly the samefor the two Poisson pro
esses, but moderately small, the tests are not so powerful. Inparti
ular, they all have di�
ulties to dete
t the non proportionality or the equality whenthe intensities of the two Poisson pro
esses only have some very lo
alized di�eren
es,even if the test of Fromont, Laurent, Reynaud-Bouret [12℄ is a bit more powerful in this
ase. This leads us to think that we surely loose in power by 
onsidering spatial Poissonpro
esses in R
2 for our study on representativeness of servi
es. We 
ould for instan
edevelop new tests of 
omparison for Poisson pro
esses not de�ned in R

2 but on a spa
etaking the stru
ture of streets or houses into a

ount.Furthermore, we used these tests to test the proportionality or the equality of theintensities of two Poisson pro
esses representing the res
aled 
oordinates in [0, 1]2 of twodi�erent servi
es of the 
ity of Rennes. We of 
ourse sometimes 
ome up against theproblem of the sizes of the 
onsidered samples again, and the tests seem to be moreoververy sensitive to a large di�eren
e in sizes for the two pro
esses. This should have to be
on�rmed by theoreti
al arguments or by a deeper pra
ti
al study.22



Finally, we used the tests of Bahr [1℄, Baringhaus and Franz [2℄, and Gretton et al. [14℄to test the proportionality between the intensities of two Poisson pro
esses representingthe res
aled 
oordinates in [0, 1]2 of one servi
e on the one side, of houses on the other side.The obtained results are not 
ompletely satisfying sin
e we were 
onstrained to 
onsider avery restri
ted area so that the sizes of the Poisson pro
esses do not di�er too mu
h. Usingsome tests of homogeneity for the Poisson pro
ess representing the 
onsidered servi
esu
h as those of Fromont, Laurent, Reynaud-Bouret [11℄ should be more appropriate.Of 
ourse, these tests should also take the stru
ture of the streets or the house to bee�e
tive. It is obvious that some tests of homogenity over a 
onvex set of R
2 wouldnot have good performan
e. Bessa
 indeed applied su
h tests of homogeneity derivedfrom a multivariate Kolmogorov-Smirnov tests, and the null hypothesis of homogeneityover 
onvex areas of Rennes was always reje
ted. Constru
ting a homogeneity test for aPoisson pro
ess de�ned on a spa
e with a very parti
ular stru
ture will be 
hallenging.The use of kernels as done in learning problems on graphs, phylogeneti
 trees, images forinstan
e, and as done in [12℄ should be a pertinent and useful tool.Referen
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