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Introduction

We are interested in this paper in studying the spatial representativeness of services like
schools, medical services, pharmacies, shops, restaurants, banks... in the city of Rennes.
More precisely, we focus on the two following questions. May two different services be
assumed to be identically spatially distributed in the city or in a restricted area? Is the
spatial distribution of one particular service homogeneous with respect to houses in the
city or in a restricted area of interest?

Assuming that the spatial representation of houses or services can be modelized by a
spatial Poisson process (see [15] and [3] for instance), these questions can be translated
from a statistical point of view as problems of testing proportionality or equality of the
intensities of two independent spatial Poisson processes.

Here we choose to investigate non parametric tests that have been recently proposed
by Baringhaus and Franz [2], Gretton et al. [14], and Fromont, Laurent, Reynaud-Bouret
[12]. Since the tests by Fromont, Laurent, Reynaud-Bouret were not studied in practice
in the original paper in a spatial context, we first evaluate the performance of the above
tests with multivariate simulated data.

Then, we apply them to economic data from PINSEE containing the (x, y)-coordinates
of houses and services on a map of Rennes in 2007. The obtained results are mostly in
accordance with our expectations. But some of these results also pose new theoretical
questions, thus confirming that modelizing economic data with Poisson processes, more
frequently used in reliability and biology, offers a lot of possibilities.



1 Point processes and Poisson processes

1.1 Definition and first properties

Point processes are the mathematical tool at hand to modelize dots (or events) that appear
at random on a domain. Here, "at random" may be understood with respect to time, or
with respect to space, or both. Let us take the example of the opening of new shops in a
given town along a specific year: we may be interested in the specific times of opening, if
we want to identify periods of more or less active trading; alternatively we may consider
the locations chosen by these shops if we want to get a picture of the more or less dynamic
areas, or we can get interested in when and where the shops open. One mathematical
way to address those problems is to represent each new shop by a dot on the map, and
to observe where or/and when the dots appear: the outcome is a point process.

Poisson processes are by far the most popular point processes. Roughly speaking, a
point process is a Poisson process if dots appear independently (in time and/or in space)
from each other. Remarkably enough, this heuristics has led to a variety of definitions of
a Poisson process, according to the field of interest, all of which are luckily compatible.

The definition we shall use here is taken from [17]. It seems to be the closest to our
purpose.

A spatial point process N is a random countable subset of X C R?. We associate to
N its intensity, which is a measure £ on X, assumed to be bounded on compact sets and
absolutely continuous w.r.t. the Lebesgue measure v. Let s be the associated density,
also called intensity of N. For all B C X, we denote by N(B) the number of elements of
N that lie in B.

Definition 1. N is a Poisson process on X C R? with intensity s w.r.t. v if and only if

1. For every B C X such that £(B) < oo, N(B) is distributed according to a Poisson
distribution with parameter £(B) = [ s(x)dv,;

2. Conditionally to the event "N(B) = n", N N B has the same distribution as an
n i.i.d. sample with common density s/ [, s(x)dv, with respect to the Lebesgue
measure v on X.

The intensity s has to be understood in an easy way: in areas of X where s takes high
values, you will expect more dots than in areas where s takes low values, and you will
find no dots at all in subsets of X where s = 0. If the intensity s is constant, you will
expect the dots to be uniformly distributed on X.

Definition 2. N s said to be homogeneous if and only if its intensity is constant on X.

Among the classical properties of a Poisson process, we only recall here the most
important one.

Proposition 1. If By,---, By are disjoint subsets of X, then N N By,---, N N By are
independent.



1.2 Poisson processes and services or houses representativeness

Recall that we study the representativeness of services in the city of Rennes. It seems
rather natural to assume that the coordinates of specific services or houses form non-
homogeneous Poisson processes in a subset of R2.

In order to be perfectly rigorous, this assumption should of course be validated by a
statistical test, but to our knowledge, there is no such test that could be used in practice
yet.

Starting however from this assumption, we can compare the distributions of two ser-
vices in any area of Rennes, or compare the distribution of a particular service with the
distribution of houses by the means of statistical hypotheses tests of proportionality or
equality of the intensities of two Poisson processes.

2 Two-sample problems for spatial Poisson processes

Let us consider a measurable subspace X of R?, equipped with the Lebesgue measure v.
Let N7 and N, be two independent Poisson processes observed on X, whose intensities
with respect to v are denoted by s; and s5, and whose numbers of points are respectively
denoted by |N;| and |N,|. Let now (Xi,..., X|n,|) and (Y1,...,Y]n,) denote the points
of the processes N; and N, respectively.

Given the observation of N; and N, we first address the question of testing the null
hypothesis (Hp): "s; and sy are proportional" against the alternative (HY): "they are
not". Some papers deal with the problem of testing (H{): "s1/s2 is constant" against
"it is increasing", such as [5] and |10]. Though the alternative "s;/ss is increasing"
usual in reliability contexts, it has no sense in our context of services representativeness
study. We will use other tests, that will be called here 'conditional" tests. Notice that
(HY) is true if and only if 51/ fx s1(x)dv, = s3/ [y s2(x)dv,. Therefore, from Definition 1
of Poisson processes, one deduces that testing (H{) against (HY) amounts to testing
distributions equality for the two i.i.d. samples (Xi,...,..., X,,) and (Y3,...,Y,,) with
respective sizes n; and ns obtained when considering N; and N, conditionally to the
event "|N;| = ny and |Ny| = ny". Many procedures have been and are still developed
to solve this classical i.i.d. two-sample problem. Of course, we first think about the
famous Kolmogorov-Smirnov and Cramer von Mises tests. However, while these tests
are very simple to understand and implement when the observations are univariate, their
extensions to multivariate observations are not so clear. One can actually generalize the
Kolmogorov-Smirnov statistic for instance in many different ways, generally expressed in

such a form:
1 &
Tks = su 0(X;) — — 0(Y;)|,
s eeg nlz 712; %)

where © is a particular class of measurable functions: X — R. Note that when X = R
and O is the set of indicators of cells (—oo, ], this exactly reduces to the well-known
Kolmogorov-Smirnov statistic. In this case, since the underlying distributions of the X;’s
and the Y’s are assumed to be atomless, this statistic is distribution free under the null
hypothesis, and the critical values of the corresponding test are easy to compute. In the
case where X C R?, this is not so simple. First, the choice of the class © is not obvious.
Then, the fact that the resulting statistic is in general not distribution free under the
null hypothesis also poses a crucial question: which critical values can we take here?



This question is usually solved through general bootstrap approaches including Efron’s
bootstrap or permutation bootstrap approaches (see [19] for instance). Friedman and
Rafsky proposed asymptotically distribution free multivariate extensions of Kolmogorov-
Smirnov and Wald-Wolfowitz testing statistics under the null hypothesis. We chose to
investigate a new version of the old Cramer test proposed by Baringhaus and Franz
[2], which has appeared to be competitive in the univariate case, regarding Kolmogorov-
Smirnov and Cramer von Mises tests, and the recent Kernel Maximum Mean Discrepancy
test proposed by Gretton et al. [14|, which has been compared to Friedman and Rafsky’s
test among others.

We secondly address the question of testing (Hp): "s; = s against the alternative
(Hy): "s; # s3". Many papers deal with this two-sample problem for homogeneous
Poisson processes such as, among others, the historical ones of [20], [8], [13], and [21], or
the more recent ones of [16], |18, |7], and [6]. However, very few papers focus on this
two-sample problem for non-homogeneous Poisson processes, which is considered here. To
our knowledge, the paper by Fromont, Laurent, Reynaud-Bouret [12] is the only one to
address this problem exactly. Of course, any level « test of (H{) against (H7) is also a level
a test of (Hy) against (H7), but the resulting test may be too conservative. Hence, when
the problem of testing (Hy) against (H;) is the only one to be considered, we exclusively
investigate the tests proposed in [12].

We detail all the investigated tests in the two following sections.

Let Py, 5, be the joint distribution of (N, N3). We set for any event A based on
(va N2)7 ]P)(Ho)(A) = SUPg, s55,51=59 P51732 (A)

2.1 Conditional tests from the classical i.i.d. two-sample problem

Let n; and ny be some positive integers. From Definition 1, we know that conditionally
to the event "|Ni| = ny and |Ny| = no", (X4, ..., X|n,)) and (Y1,...,Y]n,) have the same
distribution as two i.i.d. samples (X7 ..., X,,) and (Y7,...,Y,,) with respective densities
§1=s1/ [y s1(x)dv, and 3, = s5/ [, so(x)dv, w.r.t. the Lebesgue measure v on X. Given
the observation of Ny and Na, we here consider the problem of testing (H{): "s; and s, are
proportional" against (HY): "they are not", which amounts to testing the null hypothesis
of equality between the distributions of the i.i.d. samples (X; ..., X,,) and (Y7,...,Y,,).

2.1.1 Cramer test

Baringhaus and Franz [2| start from a result stating that if ||.|| denotes the Euclidean
norm of R4, X, X’ are random vectors of R? with the same density §; w.r.t. the Lebesgue
measure, with finite expectation, Y, Y’ are random vectors of R? with the same density
3, with finite expectation, and if X, X', Y, Y’ are independent, then

o [| X - V||| -E[|X - %] -E[IV - ¥]] > 0



Moreover, the equality is true if and only if §; = $5 (see Theorem 2.1 in [2]). This result
and the law of large numbers lead to the following testing statistic:
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with ¢(t) = v/t/2. The authors then suggest to reject the null hypothesis (H}) when
Toramer 18 large, that is in fact larger than a critical value to define. Contrary to the
classical Kolmogorov-Smirnov or Cramer-von Mises testing statistics in the univariate
context, and to Friedman-Rafsky testing statistic in the multivariate context, the statistic
Tramer 18 not distribution free under the null hypothesis. Hence, given a prescribed level
a, the (1 — «) quantile of Topamer under (H§) can not be taken as critical value for
the test. Baringhaus and Franz propose to consider either an Efron’s bootstrapped or a
permutation bootstrapped version T, .., of the statistic Ty qmer given the pooled sample
Z=(X1,..., X0, Y1,...,Ys,). As explained in details in |23| for instance, they consider
the (1 — «) quantile of Tf, .., given Z, that we denote here by ¢f,. e (1 — ). The
test proposed by Baringhaus and Franz [2] then consists in rejecting the null hypothesis
(HE) when Teramer is larger than ¢, ,,,.-(1 — @). Let us introduce the corresponding test
function, that we denote by ®cramer:

qt>C’7’ame7” = ]—Tcmmer>cemmer(l—a)- (21)

Baringhaus and Franz call their test Cramer test as Cramer |9] already proposed a similar
testing statistic for the one-sample goodness-of-fit problem in the univariate context. They
use asymptotic arguments from [23] to validate the bootstrap approach. They thus prove
that their test is asymptotically of level «, and that it is consistent against any fixed
alternative. They finally estimate the powers of their test mainly under univariate and
multivariate normal location and dispersion alternatives, and they compare these powers
with the ones of the usual parametric t-test and F-test, Kolmogorov-Smirnov and Cramer
von Mises tests in the univariate context, and with the ones of the Hotelling’s T2-test and
Bartlett’s LR-test in the multivariate contexts. They conclude that Cramer test performs
well under such alternatives.

The test Poramer is furthermore implemented in the software environment R in the
function cramer.test of the cramer package, where various options are available. Among
these options, the user can choose to apply the test ®cpamer defined in (2.1), but also
to apply another version of the test which is defined in the same way as in (2.1), just
changing ¢ in the second expression of T,qme-. We will only consider in the following
two cases: the original test denoted by ®cramer, and the test corresponding to the choice
of p(t) =1 — exp(—t/2) which was proposed by Bahr [1| and which is hence defined by

q>Bahr = 1T3ahr>c"3ahr(1—a)a (22)
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where
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with ¢(t) = 1 —exp(—t/2), and ¢}, (1 — ) is a critical value obtained from a bootstrap
approach. The user may also choose either Efron’s bootstrap or permutation bootstrap
to determine the critical values of the tests.

2.1.2 Kernel Maximum Mean Discrepancy test

Let © be a class of functions 6 : X — R and let X and Y be two independent random
variables on X with respective densities §; and S w.r.t. v. Gretton et al. [14] define the
Maximum Mean Discrepancy (MMD) over O as:

MMDI®,51,5] = sup (]Egl[e(X)]—Egz[e(?)]) (2.3)

= s ( /X 0(2)51 (2)dvy — /X e(y)§2(y)dyy). (2.4)

Noticing that when © is the space of bounded continuous functions on X, MM DI[O, 51, $5] =
0 if and only if §; = 55, any "good" estimator of MM D[O, §;, 85] or MM D[O, 51, 55]* for
instance may be a pertinent testing statistic. Since one can reasonably not work in
practice with the space of bounded continuous functions on X, Gretton et al. [14] sug-
gest to consider other classes of functions ©, which are rich enough to guarantee that
MMDI©, 31,5 = 0 if and only if §; = S5, but restrictive enough for the resulting test
to be consistent. Namely, they consider the unit balls of universal Reproducing Kernel
Hilbert Spaces. Universal RKHSs are defined in |14] and it is proved in particular in |22]
that the RKHS associated with the usual Gaussian kernel is universal. The authors actu-
ally prove that when © is the unit ball of such a universal RKHS Hg defined on X with
associated positive definite kernel K and representation function 1, then the equivalence
MMDI[©, 35,5 =0 < § = 33 holds. Moreover, from a lemma in [4], one has in this
case that

MMDI[O, 51,5 = |E; [(X)] —Eq[v(Y)]l,
= B, K(X,X) +E;,K(Y,Y') — 2E;, 5, K(X,Y),
where X’ and Y” are independent copies of X and Y, independent from X and Y, and

|.Il#¢, is the norm in Hp. Hence an unbiased estimator of MMD[O, 5y, 35]* is easily
obtained when n; = ny as

ﬁ Z (K(Xi,Xj)ﬂLK(Yi,Yj)—K(XZ,YJ) K(Xj,Yi)). (2.5)

i#j=1
One can also always (that is also when n; # ny) consider the empirical estimator of
MMDI®©, 31, 53] defined by

Tk MMDnyme = ( Z K(X;, X) + — Z K(Y;,Y) — o ZZK i, Y ) ;

zk 1 jk 1 i=1 j=1
(2.6)

TxyvvDn, =




and choose one of these estimators as testing statistic. Given a prescribed level «, Gret-
ton et al. |14 propose to reject the null hypothesis (H]) when Tk papn, is larger than
a critical value ¢y prnrp o, (1 — @) or when Tiynrp oy ny 18 larger than cip nsp p,n, (1 — ).
Cimmpa, (L — @) and Cxararp p,mp(1 — @) may be deduced from different approaches.
Cimmp.m, (I — @) may be determined from a uniform convergence bound for Tk asap o,
based on Hoeffding’s concentration inequality under the null hypothesis or from an esti-
mation of the (1—a) asymptotic quantile of Tk prarp ., under the null hypothesis based on
either Efron’s bootstrap approach given the pooled sample Z or a moments approximation
approach. Ceararp n, n, (1 —a) may also be determined from a uniform convergence bound
for Tk praiD ny my based on Hoeffding’s concentration inequality under the null hypothesis,
or a bootstrap approach.
Let us introduce the corresponding test functions:

PrrmamDm = Mrrain ny >Cierrarp o, (1-0) (2.7)

and

@KMMD,nhnz — 1TKMMD»”1’W2>CF(MMD,n1,n2(1_a) . (28)

Note that when K is the usual Gaussian kernel with a bandwidth equal to 1 that is
when K (z,2') = exp(—||z — #'[|*/2), and when the critical value ¢ psprp p,n,(1 — @) is
obtained from a bootstrap method, ®xrra1p i n, 15 very close to @pqp,e. Indeed, in this

case,
T2 . ny + No
KMMDmnminy —

TBahr-
ning

2.2 Adaptive non parametric multiple testing procedures

Let us now focus ont he problem of testing (Hp): "s; = s against the alternative
(Hy): "s1 # s9". We here give a short description of the testing procedures proposed by
Fromont, Laurent, Reynaud-Bouret[12]. For more details, we refer to the original paper.

We denote by |.|, the L*(X, dv)-norm, and by < .,. >, the scalar product associated
with |||, on X.

We assume as in [12] that s; and sy are both in L>(X) N LY(X,dv). Noticing that
this in particular implies that s; and s, belong to L?(X, dv), Fromont, Laurent, Reynaud-
Bouret propose to use non parametric estimators of ||f — g||? as testing statistics. For
instance, considering a finite dimensional subspace S of L?(X,dv) and an orthonormal
basis {¢¥x, A € A} of S for < .,. >,, they introduce the random variable T defined by

[N

T = Z Z ox(Zi)or(Zy)edey,

AEA i#i'=1

where (71, ..., Z|n|) denotes the points of the pooled Poisson process N composed of the
points from both N; and Ny (with size |[N| = |Ny| + |Na|), €? = 1 when Z; belongs to N;
and €2 = —1 when Z; belongs to No. Then T is an unbiased estimator of [IIs(f — g)|2,
where Ilg is the orthogonal projection onto S, and it may be a relevant choice of testing
statistic. Introducing the corresponding wild bootstrapped statistic defined as

||

Te = Z Z ox(Zi)pa(Zy)eies

AEA i£i'=1



where (g;);en is a sequence of i.i.d. Rademacher variables independent of N, Fromont,

Laurent, Reynaud-Bouret prove that conditionally to N, under (Hyp), the distribution

of T< is exactly the same as the distribution of T. Hence, given a prescribed level a
n (0,1), they introduce the (1 — «) quantile of T¢ conditionally to N denoted by q

and they reject (Hp) when T > q§_2¥. The conditional quantile ‘J1—a hence presents the
following advantages: first it leads to an exact level « test, and secondly, it can be easily
approximated by a classical Monte Carlo method.

Starting from this first procedure, Fromont, Laurent, Reynaud-Bouret generalize it by
noticing that the function: X* — R, (z,2') — Y, ©a(2)@a(2') is known as a projection
kernel in Learning Theory. They propose then to consider any symmetric kernel function
K chosen among the three possibilities described below, and to introduce the testing

statistic
[N

T =Y K(Zi, Zy)e)s). (2.9)
ii' =1
As above, considering its wild bootstrapped version
IN|
= Z K(Zi,ZZ‘/)&fZ‘&fZ‘/, (210)
ii' =1

and the (1—«) quantile of Tf} conditionally to IV that they denote by qgl)_a, they propose

to reject (Hp) when

Ty > q%)_a-

Let us give below the three possible choices for K.

1. A first choice for K is a symmetric kernel function based on an orthonormal family:

= ZSOA(Z)%(Z

AEA
where {¢), A € A} is an orthonormal family for < .,. >,.

2. A second choice for K is a kernel function based on an approximation kernel k: for
2= (21,29), 2’ = (2}, 2) in R?,

1 21— 20 29 — 2
no_ 1 2
K(’Z’Z) - hthk ( hl ) h2 ’

where k is an approximation kernel in L?(R?), and such that k(—z) = k(z), and
h = (hi, hy) is a vector of 2 positive bandwiths.

3. A third choice for K is a learning or Mercer kernel such that

K(z,2") = (¥(2), ¥ (2) e

where 1) and Hg are respectively a representation function and a RKHS associated
with K. Here (.,.)%, denotes the scalar product of H.



This test could be viewed as a version of the test of Gretton et al. [14] adapted to the
Poisson framework. However, the critical value is here not chosen in the same way as in
|14]|. Fromont, Laurent, Reynaud-Bouret |12] actually propose a critical value leading to
a test with good theoretical non asymptotic performance in the sense that it is exactly of
level v and that it also achieves a prescribed probability of second kind error for s; and
so that are not very far from each other.

Of course, the question of the choice of the kernel function K is crucial here, since
different kernel functions may lead to very different performance. While Gretton et
al. [14] calibrate the parameters of the chosen kernel function by a heuristic approach,
Fromont, Laurent, Reynaud-Bouret [12] overcome this difficulty by considering an aggre-
gation method specific to adaptive testing. Instead of taking a single kernel function, they
propose to introduce a finite collection of kernel functions {Km, m € M}, chosen among
the possibilities listed above. For every m in M, let T x,, and Te &, be respectively defined
by (2.9) and (2.10) with K = K,,, and let {w,,,m € M} be a collection of positive
numbers such that ) . e " < 1. For u € (0,1), let q,(é\fl)_u be the (1 —u) quantile of

Tf{m conditionally to the pooled process N. The test proposed in |12] rejects (Hp) when
there exists at least one m in M such that

where ufo) is defined as

u&N) = sup {u >0,P (sup (Tf( - qian) ue —um) >0
meM

N) < a}. (2.11)

(2.12)

Let ® 44, be the corresponding test function defined by

Dy =1

- (N .
SHPMEM <TKm_qm ifu(N)e*wm> >0
> feY

Note that given the observation of the pooled process IV, u((xN) and the quantiles q(Nl) Ny _
m,l—ugy m

can be estimated by a Monte Carlo procedure.
This multiple testing procedure has been constructed to be exactly of level « that is

Pry) (Pagg = 1) < .

Then it is proved to satisfy oracle type inequalities, and when adequate approximation
kernels are chosen, to be adaptive in the minimax sense over multivariate Sobolev and
anisotropic Nikol’skii-Besov balls.

2.3 Simulation study

We aim here at evaluating the practical performance in terms of levels and powers of the
four tests Pcvamer, Loanrs PCxrriD g n, and @44, defined by (2.1), (2.2), (2.8) and (2.12).
We consider various densities with respect to the Lebesgue measure on X = [0, 1]?

X = R?, that are uniform and normal densities, and deviations from them. Let us thus
introduce the following notations:

fa,€($) = 1(0,1)2 (I) + 81(07(1)2 (I) — 81((1’2&)2 (I),

fue) = oo (e — /2 x 015%)



We first choose several parameters (a,¢) in [0,0.5] x [0, 1] and g in R and we realize 1000
simulations of two independent Poisson Processes N7 and N, with respective intensities
2000 and 200f, . or 200fy5 and 200f, w.r.t. the Lebesgue measure v of R2.

All the tests considered here are applied with a level a = 0.05.

Working conditionally to the event "|N;| = ny and |No| = ny", we consider ®cpamer
and ®p,p,- with Efron’s bootstrap method with 1000 bootstrap replicates, which are im-
plemented in the R function cramer.test of the package cramer. Then, we consider
D g MM Dy e With a Gaussian kernel with bandwidth o selected from a heuristic approach
of Gretton et al. [14], and we run it with the Matlab program given in open access by the
authors.

We furthermore consider ®4,, with a family of kernel functions first based on the
standard Gaussian approximation kernel ks and secondly based on the Epanechnikov
approximation kernel kg, where: kg(z) = exp(—|z||?/2) for all z € R? and kg(z1,2) =
(1 = 27)(1 = 23)1jj(z1,0)|<1- For both tests, we consider the collection of bandwidths
{hm,m € M} ={1/24,1/16,1/12,1/8,1/4,1/2} and the associated collection of kernel

functions {K,,,m € M} given for all m € M either by K,(z,2) = ke <Zh_7:,> or
Kin(z,7') = kg (Zh_:>. We take for both tests w,, = 1/|M| = 1/6, and we denote
them respectively by ® 444 and @44, . Let us recall that the tests @440 ¢ and @40 £
reject the null hypothesis (Hy) when there exists m in M such that

s V)

where N corresponds to the pooled process obtained from N; and Ny, and u((xN) is defined
in (2.11). Hence, for each observation of the pooled process N, we have to estimate ufo)
(™)
m,1
Carlo methods based on the simulation of 400000 independent samples of size |N| of i.i.d.
Rademacher variables. Half of the samples is used to estimate the distribution of each T [
The other half is used to approximate the conditional probabilities occurring in (2.11).
The point ul™ is obtained by dichotomy, such that the estimated conditional probability
occurring in (2.11) is less than «, but as close as possible to a. We implemented the test

with Matlab from Fromont, Laurent, Reynaud-Bouret [12]|'s programs.

and the quantiles ¢ ) . These estimations are done as in [12] by classical Monte
—uy e~ wm

For each of the 1000 simulations of the Poisson Processes N; and Ny, we determine
the conclusions of the tests ®cramers Pranrs Prrmarpning, Paggc and Pagy p. The levels
or powers of the tests are estimated by the number of rejections for these tests divided
by 1000. The results are given in the following table.

‘ Densities ‘ (I)Cramer ‘ (I)Bahr ‘ (I)KMMD,nl,nz ‘ (I)Agg,G ‘ (I)Agg,E' ‘
(fo.0 fo.0) 0.052 | 0.052 0.06 0.0485 | 0.046
(fo.0 fo.25.0.8) 0.10 0.09 0.15 0.17 0.18
(foo, foasos) | 0.10 | 0.09 0.18 023 | 021
(oo, fozs.1) 014 | 0.11 0.21 0.26 | 0.25
(fos, fos) 0.048 | 0.046 0.043 0.0485 | 0.046
(fos, fos2) 0.36 | 0.37 0.26 021 | 0.18
(fos, fos4) 0.90 0.91 0.83 0.69 0.66
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Comments. The first thing we can notice here is that the tests ®cromer, PBanr, and
@ K 110Dy o are more powerful than @ 44 ¢ and @ 44,  When the alternative is composed
of intensities with a smooth difference. On the contrary, ®44¢ and ®44, r are more
powerful than ®cramer, Pranr, and Prararpn, n, When the alternative is composed of
intensities with very localized differences. We are not really surprised here since the tests
developed by Fromont, Laurent and Reynaud-Bouret were precisely constructed to be
adaptive over classes of possibly very irregular alternatives. We could surely improve the
powers of these tests for alternatives composed of intensities with smooth differences by
considering another family of bandwidths or even another family of kernels.

3 Studies on spatial representativeness of services

The data we study here are reported in two tables. The first table consists in the (x,y)-
coordinates on a map of the city of Rennes of all houses, and the number of flats per
houses (when needed) in 2007. The second table consists in the (z,y)-coordinates on
the same map of Rennes of various services such as administrative offices, shops, schools,
artisans, restaurants, medical services, social services, cultural services, with an INSEE
code ("A101",...,"D237") giving the precise type of each service.

3.1 Comparisons for various pairs of services

We first aim at comparing the distributions of various services. For sake of simplicity,
we rescale the (x,y) original coordinates, so that (x,y) € [0, 1]2. We represent the points
thus obtained for services on the following figure.
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Figure 1: Representation of all services
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We now consider various pairs of services, where each pair is denoted by Servicel
and Service2. The points defined by the rescaled coordinates corresponding to Servicel
are assumed to be a Poisson process N; with intensity s; with respect to the Lebesgue
measure on X = [0, 1]%, and the points defined by the rescaled coordinates corresponding
to Service2 are assumed to be a Poisson process Ny with intensity s, with respect to the
Lebesgue measure on X.

The points of the Poisson processes corresponding to each considered pair of services
are represented in the following figures.
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Figure 2: Representation of public and private secondary schools
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Figure 3: Representation of general medicine doctors and pharmacies
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Figure 4: Representation of pharmacies and medical analysis laboratories

13



o
O Pediatrics
A Gynecology—-obstetricy
[ee]
g
o
A
@ o °
S o |
£
A
g o AOA A
o
o < A
T . IS
> o
N
8 4
Jay o
o
o
S -
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

X-coordinate

Figure 5: Representation of pediatricians and obstetricians
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Figure 6: Representation of ophtalmologists and opticians
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Figure 7: Representation of clothing and shoe shops
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Figure 8: Representation of clothing shops and mini-markets
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Figure 9: Representation of mini-markets and restaurants
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Figure 10: Representation of baker’s and butcher’s shops
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Figure 11: Representation of hairdressers and perfume shops

3.1.1 Conditional tests

In this section, we focus on the problem of testing (Hj) "s; and sy are proportional”
against (HY) "they are not" for the above pairs of services. We apply the conditional
tests which are described in Section 2.1 and studied in Section 2.3.

For each considered pair of services, we work here conditionally to the event "|N;| = n;
and |Ny| = ny". The tests Poramer and Ppqp, defined by (2.1) and (2.2) are applied with
a level o = 0.05, and with an Efron’s bootstrap approximation with 100000 bootstrap
replicates. The test @ ararp .y n, defined by (2.8) is applied with a level v = 0.05, with
the method of moments approximation as recommended by the authors for moderately
small data sets, and with the default Gaussian kernel (whose bandwidth o is heuristically
selected). The results are given in the following table. Each row corresponds to a pair of
services. Rejection of the null hypothesis is denoted by 1, while acceptance is denoted by 0.
Estimations of the p-values of the tests ®cramer and P pqp, are given between parentheses,

and the heuristic choice of o is given between brackets for the test ® g ararp.n no-

‘ Services

‘ (I)Cramer ‘ (I)Bahr ‘ (I)KMMD,nl,nz ‘

Public (C201) / Private (C202) second. schools

General medicine (D201) / Pharmacy (D301)

Pharmacy (D301) / Medical analysis lab. (D302)

Pediatrics (D210) / Gynecology-obstetrics (D205)

Ophtalmologist (D208) / Optician (D234)

Clothing shop (B302) / Shoe shop (B304)

Clothing shop (B302) / Mini-market (B201)

Mini-market (B201) / Restaurant (A504)

Baker’s (B203) / Butcher’s (B204) shops

Hairdressing (A501) / Perfume shop (B310)

0o = 0.22]
0o = 0.21]
0o = 0.23|
0o = 0.23|
0lc = 0.18]
0l = 0.05]
I[c = 0.22]
llo = 0.23]
0o = 0.18|
0o = 0.17|
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3.1.2 Adaptive tests

We focus now on the problem of testing (Hy) "s; = so" against (H;) "s; # so" for the
above pairs of services. We apply the tests @44 ¢ and ®,44 g described in Section 2.2 and
also studied in Section 2.3.

The results are given in the following table. Each row corresponds to a pair of services.
Rejection of the null hypothesis for a level of significance a = 0.05 is denoted by 1, while
acceptance is denoted by 0.

| Services | Pagg.6 | Pagy.r |
Public (C201) / Private (C202) second. schools 0 0
General medicine (D201) / Pharmacy (D301)
Pharmacy (D301) / Medical analysis lab. (D302)
Pediatrics (D210) / Gynecology-obstetrics (D205)
Ophtalmologist (D208) / Optician (D234)
Clothing shop (B302) / Shoe shop (B304)
Clothing shop (B302) / Mini-market (B201)
Mini-market (B201) / Restaurant (A504)

Baker’s (B203) / Butcher’s (B204) shops
Hairdressing (A501) / Perfume shop (B310)

el e i e =
el el i e el = e e

3.1.3 Comments

We mainly obtain results that are in accordance with the intuition we could have looking
at the representations of the considered services pairs. But notice that in some cases, the
sizes of the Poisson processes corresponding to both services are small or moderately small,
though the conditional tests considered here were essentially validated by asymptotical
arguments. In other cases, the sizes of the Poisson processes are very different, with a
rather small one, and the tests seem to be sensitive to such sizes considerations. These
are the main limits of the present study. Surely, our considering the data as Poisson
processes on the whole space [0,1]?, and comparison tests for such processes, will have
to be revised. The particular structure of the data, that are distributed on a discrete
network of addresses of a network of streets will have to be taken into account. The tests
developed by Gretton et al. and Fromont, Laurent, Reynaud-Bouret are based on kernel
functions. Kernel functions are precisely some of the most famous current tools to tackle
data with particular structures. For instance, considering the same tests as above, but
with a kernel specifically adapted to the structure involved here (as done for instance for
graphs, trees, or images analysis) will be an interesting track to explore. A fundamental
step for the construction of the test will also consist in choosing the best mathematical
structure to modelize the data space.

3.2 Representativeness of various services with respect to houses

The question we tackle in this section is: "Are services well distributed with respect to
the population in some particular areas of the city of Rennes?". A natural idea to answer
this question is to use conditional tests as explained above, to test (H{) against (HY) for
two Poisson processes N1 and N,, where N; modelizes the coordinates of houses while N,
modelizes the coordinates of a service.
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The main drawbacks of such a use of conditional tests are the following ones. First, we
cannot here take into account the number of accommodations per address since a Poisson
process can not contain several times the same point. Secondly, in much areas of the city,
services are far less numerous than houses, and we have seen that it can be a drawback
for the use of conditional tests. We therefore choose to consider here only a small area of
the center of Rennes, where several services may be rather numerous.

Let us represent some of these services with respect to houses.
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Figure 12: Representation of clothing shops w. r. t. houses in a small center area
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Figure 13: Representation of shoe shops w. r. t. houses in a small center area
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Figure 14: Representation of restaurants w. r. t. houses in a small center area
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Figure 15: Representation of general medicine doctors w. r. t. houses in a small center
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Figure 16: Representation of banks w. r. t. houses in a small center area
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The obtained results are given in the following table. Rejection of the null hypothesis
for a level of significance v = 0.05 is denoted by 1, while acceptance is denoted by 0.
Estimations of the p-values of the tests ®crqmer and P pqp, are given between parentheses,
and the heuristic choice of o is given between brackets for the test ®xararp n ns-

‘ Services ‘ qt>C’7’ame7” ‘ q>Bahr ‘ (I)KMMD,nl,ng ‘
Clothing shop (B302) 0(0.16) | 0(0.20) | O]c = 0.01]
Shoe shop (B304) 1(0.018) | 1(0.020) | 1| = 0.01]
Restaurant (A504) 0(0.09) | 0(0.23) | 1|o =0.02]
General medicine (D201) | 0(0.18) | 0(0.32) | 1 [0 = 0.15]
Bank (A203) 0(0.51) | 0(0.71) | 1o = 0.14]

Comments. The three tests give corroborating conclusions for clothing and shoe shops,
hence we can trust these conclusions that are: the null hypothesis is accepted for clothing
shops while it is rejected for shoe shops for a level of significance a = 0.05. These
conclusions are in accordance with the intuition we could have just looking at the figures
representing the distribution of both shops. As concerns restaurants, the conclusions of
the Cramer and Bahr’s tests differ from the conclusion of Gretton et al.’s test. This may
be explained by the low estimated p-values for the first tests: the test of Gretton et al.
rejects the null hypothesis, and with a level a = 0.1, the Cramer test would also reject it.
As for general medicine and banks, the conclusions of the tests are not corroborating, but
one can not here impute this to low p-values for the Cramer and Bahr’s test. We conjecture
that the tests suffer here from the too small size of the Poisson processes corresponding
to these services. Indeed, the whole space [0, 1]? is considered here, whereas our data are
not distributed on this whole space, but on a discrete network of points in this space, or
at least on a network of streets. This is again a question to be gone into more deeply,
from both practical and theoretical point of views.

4 Conclusions

We have first investigated the performance of the tests proposed by Bahr [1|, Baringhaus
and Franz [2], Gretton et al. [14] and Fromont, Laurent, Reynaud-Bouret [12]| in a
simulation study. As expected, when the number of simulated data is nearly the same
for the two Poisson processes, but moderately small, the tests are not so powerful. In
particular, they all have difficulties to detect the non proportionality or the equality when
the intensities of the two Poisson processes only have some very localized differences,
even if the test of Fromont, Laurent, Reynaud-Bouret [12| is a bit more powerful in this
case. This leads us to think that we surely loose in power by considering spatial Poisson
processes in R? for our study on representativeness of services. We could for instance
develop new tests of comparison for Poisson processes not defined in R? but on a space
taking the structure of streets or houses into account.

Furthermore, we used these tests to test the proportionality or the equality of the
intensities of two Poisson processes representing the rescaled coordinates in [0, 1]* of two
different services of the city of Rennes. We of course sometimes come up against the
problem of the sizes of the considered samples again, and the tests seem to be moreover
very sensitive to a large difference in sizes for the two processes. This should have to be
confirmed by theoretical arguments or by a deeper practical study.
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Finally, we used the tests of Bahr [1], Baringhaus and Franz [2], and Gretton et al. [14]
to test the proportionality between the intensities of two Poisson processes representing
the rescaled coordinates in [0, 1]? of one service on the one side, of houses on the other side.
The obtained results are not completely satisfying since we were constrained to consider a
very restricted area so that the sizes of the Poisson processes do not differ too much. Using
some tests of homogeneity for the Poisson process representing the considered service
such as those of Fromont, Laurent, Reynaud-Bouret [11] should be more appropriate.
Of course, these tests should also take the structure of the streets or the house to be
effective. It is obvious that some tests of homogenity over a convex set of R? would
not have good performance. Bessac indeed applied such tests of homogeneity derived
from a multivariate Kolmogorov-Smirnov tests, and the null hypothesis of homogeneity
over convex areas of Rennes was always rejected. Constructing a homogeneity test for a
Poisson process defined on a space with a very particular structure will be challenging.
The use of kernels as done in learning problems on graphs, phylogenetic trees, images for
instance, and as done in [12] should be a pertinent and useful tool.
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