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1. Introduction

Firms and workers are, on average, more productive in larger cities. This fact — already discussed
by Adam Smith (1776) and Alfred Marshall (1890) — is now firmly established empirically (see
Rosenthal and Strange, 2004, and Melo, Graham, and Noland, 2009, for reviews and summaries
of existing findings). Estimates of the magnitude of this effect range between a 2 and 7 percent
productivity increase from a doubling of city size for a large range of city sizes, depending on the
sector and details of the estimation procedure.

For a long time, the higher average productivity of firms and workers in larger cities has been
attributed to ‘agglomeration economies’. These agglomeration economies are thought to arise from
a variety of mechanisms such as the possibility for similar firms to share suppliers, the existence
of thick labour markets ironing out firm-level shocks or facilitating matching, or the possibility to
learn from the experiences and innovations of others (see Duranton and Puga, 2004, for a review).
All these mechanisms share a common prediction: the concentration of firms and workers in space
makes them more productive.

More recently, an alternative explanation has been offered based on ‘firm selection’. The argu-
ment builds on work by Melitz (2003), who introduces product differentiation and international
or inter-regional trade in the framework of industry dynamics of Hopenhayn (1992). Melitz and
Ottaviano (2008) incorporate endogenous price-cost mark-ups in this framework and show that
larger markets attract more firms, which makes competition tougher.1 In turn, this leads less
productive firms to exit. This suggests that the higher average productivity of firms and workers
in larger cities could instead result from a stronger Darwinian selection of firms.

Our main objective in this paper is to distinguish between agglomeration and firm selection
in explaining why average productivity is higher in larger cities. To do so, our first step is to
free the framework of Melitz and Ottaviano (2008) from distributional assumptions and generalise
it to many cities. We then combine this model with a fairly general model of agglomeration in
the spirit of Fujita and Ogawa (1982) and Lucas and Rossi-Hansberg (2002). This nested model
allows us to parameterise the relative importance of agglomeration and selection. The main
prediction of our model is that, while selection and agglomeration effects both make average firm
log productivity higher in larger cities, they have different predictions for how the shape of the
log productivity distribution varies with city size. In particular, stronger selection effects in larger
cities should lead to a greater left truncation of the distribution of firm log productivities in larger
cities, as the least productive firms exit. Stronger agglomeration effects in larger cities should lead
instead to a greater rightwards shift of the distribution of firm log productivities in larger cities, as
agglomeration effects make all firms more productive. To the extent that more productive firms are
better able to reap the benefits of agglomeration, agglomeration should also lead to an increased
dilation of the distribution of firm log productivities in larger cities.

We then use this predictions to assess the relative importance of agglomeration and firm selec-
tion for different sectors using data for all French firms. Our structural estimation is in two steps.

1Bernard, Eaton, Jensen, and Kortum (2003) also develop a model with heterogenous firm productivity levels and
endogenous mark-ups but, unlike in Melitz and Ottaviano (2008), these mark-ups are not affected by market size. In
Nocke (2006), more able entrepreneurs sort into larger markets because competition there is more intense.
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We first estimate total factor productivity at the establishment level. Next, we develop a new
quantile approach to compare the distribution of establishment log productivities for each sector
across metropolitan areas of different sizes. As stipulated by the model, we estimate the extent
to which the log productivity distribution in large cities is left-truncated (evidence of differences
in selection effects) or dilated and right-shifted (evidence of differences in agglomeration effects)
compared to the log productivity distribution in small cities.

This empirical approach offers a number of benefits. First, it allows both agglomeration eco-
nomies and firm selection to play a role, instead of focusing on just one or the other. Second,
while firmly grounded in a nested model, our approach identifies selection and agglomeration
from features that are common to a much broader class of models. Basically, it relies on fiercer
competition eliminating the weakest firms and on agglomeration economies raising everyone’s
productivity — possibly to different extents. Third, we do not rely on particular distributional
assumptions of firms’ productivity nor on a particular moment of the data. Fourth, our approach
does not attempt to identify selection by looking for cutoffs in the lower tail of the log productivity
distribution, which may be obscured by measurement error, nor by looking for greater log pro-
ductivity dispersion in larger cities, which is not a necessary consequence of selection. Instead, it
estimates differences in truncation across areas from their entire distributions using the fact that
greater truncation raises the density distribution proportionately everywhere to the right of the
cutoff.

Our main finding is that productivity differences between French metropolitan areas are ex-
plained mostly by agglomeration. On the other hand, we find no systematic evidence of stronger
selection in larger cities. We begin with the simplest characterisation of agglomeration economies:
a common upwards shift in log productivity. This shift alone is able to explain most of the
differences in the log productivity distribution between cities of different sizes, and corresponds
to a productivity gain across the board of about 12 percent for establishments in metropolitan
areas with population above 200,000 relative to establishments located elsewhere. Even with
this simple characterisation of agglomeration economies, there are just no sizeable differences in
left truncation across cities of different sizes. We then also allow for the possibility that more
productive establishments are better able to reap the benefits from agglomeration, which dilates
upwards the log productivity distribution. This additional consequence of agglomeration is also
supported by the data. While the average productivity gain is now about 9 percent , establishments
at the bottom quartile of the log productivity distribution are only 5 percent more productive in
metropolitan areas with population above 200,000 than elsewhere whereas establishments at the
top quartile are about 14 percent more productive in larger cities.

While our results about agglomeration and selection apply broadly to manufacturing and busi-
ness services as well as to most particular sectors, we can find some exceptions within sufficiently
detailed sectoral classifications. A few sectors do not seem to benefit from stronger agglomeration
economies in large metropolitan areas. A few sectors also exhibit stronger selection in large
metropolitan areas. However, such exceptions play almost no role in explaining differences across
cities in the aggregate log productivity distribution. Finally, none of our results appears sensitive
to our choice of estimation technique for productivity nor to the sample of establishments.
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Our paper is related to the large agglomeration literature building on Henderson (1974) and
Sveikauskas (1975), and surveyed in Duranton and Puga (2004), Rosenthal and Strange (2004) and
Head and Mayer (2004). We extend it by considering an entirely different reason for the higher
average productivity in larger cities. It is also related to the pioneering work of Syverson (2004)
who examines the effect of market size on firm selection in the ready-made concrete sector and the
emerging literature that follows (Del Gatto, Mion, and Ottaviano, 2006, Del Gatto, Ottaviano, and
Pagnini, 2008). A first difference with Syverson’s work is that we build our empirical approach on a
nested model of selection and agglomeration rather than on a model incorporating selection alone.
Considering agglomeration and selection simultaneously allows us to identify robust differences
in predictions between the two types of mechanisms. A second difference is that, instead of
examining differences in summary statistics across locations, we develop a quantile approach
that traces differences throughout the log productivity distribution. A third difference is that we
consider firms not only in the ready-made concrete sector but in the entire economy. Our paper is
finally related to Carrasco and Florens (2000), since our quantile approach adapts their results for
an infinite set of moments to deal with an infinite set of quantile equalities.2

The rest of this paper is organised as follows. The next section proposes a generalisation of
Melitz and Ottaviano (2008) and combines it with an agglomeration model. Section 3 describes
our econometric approach. Section 4 discusses the data and the details of our empirical imple-
mentation. The baseline results are then presented in Section 5. Section 6 introduces a more
general version of our theoretical model and econometric approach, and Section 7 presents our
corresponding main results. Finally, Section 8 discusses some additional issues, and Section 9

concludes.

2. A nested model of selection and agglomeration

To build the theoretical foundations of our empirical approach, we nest a generalised version of
the firm selection model of Melitz and Ottaviano (2008) and a model of agglomeration economies
in the spirit of Fujita and Ogawa (1982) and Lucas and Rossi-Hansberg (2002).

An individual consumer’s utility is given by

U = q0 + α
∫

i∈Ω
qidi− 1

2
γ
∫

i∈Ω
(qi)2

di− 1
2

η

(∫
i∈Ω

qidi
)2

, (1)

2There is also a large literature in international trade that explores whether good firms self-select into exporting or
learn from it. Early studies (Clerides, Lach, and Tybout, 1998, Bernard and Jensen, 1999) conclude at the predominance
of self-selection by observing that exporting firms have better pre-determined characteristics. More recent work by
Lileeva and Trefler (2007) shows that lower us tariffs provided less productive Canadian firms with an opportunity
to invest and improve their productivity to export to the us. A similar type of question can be raised regarding the
higher productivity of firms in import-competing sectors. Pavcnik (2002) uses trade liberalisation in Chile to provide
evidence about both selection (exit of the least productive firms and factor reallocation towards the more productive
firms) and increases in productivity when firms have to compete with importers. Both strands of literature usually
identifies selection from changes over time either in trade policy or along the firm life-cycle. With city size changing
only slowly over time, we need to use instead a cross-sectional approach. The other difference with the trade literature
is that we implement a structural model rather than run reduced-form regressions. We postpone further discussion of
how our results fit with the implications from this trade literature to the concluding section.
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where q0 denotes the individual’s consumption of a homogenous numéraire good, and qi her con-
sumption of variety i of a set Ω of differentiated varieties. The three positive demand parameters α,
γ, and η are such that a higher α and a lower η increase demand for differentiated varieties relative
to the numéraire, while a higher γ reflects more product differentiation between varieties.3

Utility maximisation subject to the budget constraint yields the following inverse demand for
differentiated variety i by an individual consumer:

pi = α− γqi − η
∫

j∈Ω
qjdj , (2)

where pi denotes the price of variety i. It follows from (2) that varieties with too high a price are
not consumed. This is because, by (1), the marginal utility for any particular differentiated variety
is bounded. Let Ω̄ denote the set of varieties with positive consumption levels in equilibrium, ω

the measure of Ω̄, and P ≡ 1
ω

∫
j∈Ω̄ pjdj the average price of varieties with positive consumption.

Integrating equation (2) over all varieties in Ω̄, solving for
∫

j∈Ω qjdj, and substituting this back into
equation (2), we can solve for an individual consumer’s demand for variety i as:

qi =

 1
γ+ηω (α + η

γ ωP)− 1
γ pi if pi 6 h̄ ≡ P + γ(α−P)

γ+ηω ,

0 if pi > h̄ .
(3)

The price threshold, h̄, in equation (3) follows immediately from the restriction qi > 0. By the
definition of P and equation (2), P < α so that h̄ > P.

The numéraire good is produced under constant returns to scale using one unit of labour per
unit of output. It can be freely traded when we consider more than one location. This implies that
the cost to firms of hiring one unit of labour is always unity.4

Differentiated varieties are produced under monopolistic competition. By incurring a sunk
entry cost s, a firm is able to develop a new variety that can be produced using h units of labour
per unit of output. Given that the cost of each unit of labour equals one unit of the numéraire, h is
also the marginal cost. The unit labour requirement h differs across firms and for each of them it is
randomly drawn from a distribution with known probability density function g(h) and cumulative
G(h). Melitz and Ottaviano (2008) derive most of their results under the assumption that g(h) is a
Pareto distribution. By contrast, we do not adopt any particular distribution for g(h). To simplify
the derivation of the results, we only require G(.) to be continuous and differentiable. Firms with a
marginal cost higher than the price at which consumer demand becomes zero are unable to cover
their marginal cost and exit. The set of goods varieties that end up being produced in equilibrium
is therefore Ω̄ = {i ∈ Ω | h 6 h̄}.

Since all varieties enter symmetrically into utility, we can index firms by their unit labour
requirement h instead of the specific variety i they produce. Re-writing the individual consumer
demand of (3) in terms of h̄ and multiplying this by the mass of consumers C yields the following

3The specification in (1) is often referred to as the quadratic utility model of horizontal product differentiation. It has
been used in industrial organisation by, for instance, Dixit (1979) and Vives (1990) and has become popular in location
modelling following Ottaviano, Tabuchi, and Thisse (2002).

4The unit cost for labour holds provided there is some production of the numéraire good everywhere. Given the
quasi-linear preferences, this requires that income is high enough, which is easy to ensure.
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expression for the total sales of an individual firm:

Q(h) = Cq(h) =

C
γ [h̄− p(h)] if p(h) 6 h̄ ,

0 if p(h) > h̄ .
(4)

Given that the entry cost is sunk when firms draw their value of h, active firms set prices to
maximise operational profits given by

π(h) = [p(h)− h]Q(h) . (5)

Maximising π(h) in (5) subject to (4) yields the optimal pricing rule

p(h) =
1
2
(h + h̄) . (6)

Substituting (4) and (6) into (5) we obtain equilibrium operational profits:

π(h) =
C
4γ

(h̄− h)2 . (7)

Entry into the monopolistically competitive industry takes place until ex-ante expected profits are
driven to zero. The operational profits expected prior to entry must therefore be exactly offset by
the sunk entry cost:

C
4γ

∫ h̄

0
(h̄− h)2g(h)dh = s . (8)

The free-entry condition (8) implicitly defines the marginal cost cutoff h̄ as a function of the
distribution g(h), the sunk entry cost s, the mass of consumers C, and the degree of product
differentiation parameter γ. We note that while we rely on the framework developed by Melitz
and Ottaviano (2008), the existence of a marginal cost cutoff should be a general property of a
whole class of market selection models.

We now turn to the agglomeration components of the model. Workers are endowed with a
single unit of working time each that they supply inelastically. Each worker is made more product-
ive by interactions with other workers. More specifically, when interacting with W other workers,
the effective units of labour supplied by an individual worker during their unit working time is
a(W), where a(0) = 1, a′ > 0 and a′′ < 0. We can think of such interactions as exchanges of ideas
between workers, where being exposed to a greater diversity of ideas makes each worker more
productive. This motivation for agglomeration economies based on interactions between workers
can be found in, amongst others, Fujita and Ogawa (1982) and Lucas and Rossi-Hansberg (2002)
— we introduce a discrete version of their spatial decay for interactions below. Duranton and
Puga (2004) review micro-foundations of numerous alternative agglomeration mechanisms, which
also result in a reduced form like a(W). We assume that such interactions benefit workers across
occupations, i.e., regardless of whether they produce any particular variety of the differentiated
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good or the numéraire good (a simplifying assumption that we relax below).5 This, given the unit
payment per effective unit of labour supplied, implies that the total labour income of each worker
in any occupation is a(W).

A firm with unit labour requirement h hires l(h) = Q(h)h/a(W) workers at a total cost of
a(W)l(h) = Q(h)h. The natural logarithm of the firm’s productivity is then given by

φ = ln
(

Q
l

)
= ln [a(W)]− ln(h) . (9)

The probability density function of firms’ log productivities is then

f (φ) =

0 for φ < A− ln(h̄) ,
eA−φ g(eA−φ)

G(h̄) for φ > A− ln(h̄) ,
(10)

where
A ≡ ln [a(W)] . (11)

The numerator of f (φ), eA−φ g
(
eA−φ

)
follows from using equation (9) and the change of vari-

ables theorem, while the denominator G(h̄) takes care of the fact that firms with a unit labour
requirement above h̄ exit. The model can now be solved sequentially by first using the free entry
condition of equation (8) to solve for the equilibrium cut-off unit labour requirement h̄. We can
then substitute h̄ into (10) to obtain the equilibrium distribution of firm productivities. Finally,
equation (6) gives prices and the definition of h̄ in (3) allows us to compute the mass of varieties
produced, ω.

To understand how selection and agglomeration forces contribute to determining the distribu-
tion of firms’ log productivities we must consider what is the relevant mass C of consumers that
each firm sells to and what is the relevant mass W of people that each worker interacts with. Before
deriving our formal results in a general setting below, let us first develop a simpler example that
illustrates the key properties of our framework with particular clarity.

An illustrative example

Consider two polar possibilities for both demand and interactions in an economy with two cities.
In terms of demand, at one extreme we can think of firms selling only to consumers in their city and
thus competing with other local firms only (local product-market competition). At the other extreme,
firms can sell with equal ease to consumers anywhere and thus compete with firms everywhere
(global product-market competition). In terms of interactions, at one extreme we can think of workers
interacting exclusively with other workers living in the same city (local interactions). At the other

5More realistically, we would expect the benefits of agglomeration to depend not just on the interactions between
workers but also on the characteristics of firms. In particular, more productive firms (i.e., those with a lower h) may
be more able to reap the benefits of agglomeration. We explicitly allow for this possibility in Section 6, where we
extend both our model and empirical approach. Regarding the assumption that the benefits of agglomeration economies
percolate to the numéraire sector, this ensures that such benefits get reflected in individual worker earnings so that these
increase with city size, consistent with the empirical evidence (see, e.g., Glaeser and Maré, 2001, Wheaton and Lewis,
2002, Combes, Duranton, Gobillon, and Roux, 2009). If we re-wrote the model so that, counterfactually, earnings per
worker not only did not increase but decreased with city size, then selection forces could be much weakened or even
reversed.
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pd
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Panel (a) Panel (b)
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pd
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pd

f
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Panel (c) Panel (d)
(stronger selection and stronger agglomeration (same selection and same agglomeration

at large vs. small city) at large vs. small city)

Figure 1: Log productivity distributions in large (solid) and small cities (dashed)

extreme, workers can interact with equal ease with workers living anywhere (global interactions).
The combination of these possibilities gives us four cases.6 We now compare in each of the four
cases the distribution of firms’ log productivities across two cities of different population size (a
large city indexed 1 and a small city indexed 2).

Case 1 (local product-market competition and global interactions). Panel (a) in Figure 1 plots the dis-
tribution of firms’ log productivities in a city with a large population (continuous line) and in a
city with a small population (dashed line) in the case where firms only sell in their local city and
workers enjoy interactions with the same intensity with workers from everywhere (i.e., C1 > C2

and W1 = W2). Compared with the distribution in the small city, the large-city distribution is
left-truncated as a consequence of firm selection. This left truncation implies that the peak of the
large city distribution is higher than that of the small city distribution and that the two peaks occur
at the same level of productivity. To understand this greater truncation in the large city, note that if
the number of active firms in the large city was the same as in the small city, every large-city firm
would sell proportionately more. Formally, using equations (4) and (6), total sales for an individual
firm can be expressed as C

2γ (h̄− h). Hence, for a given measure of firms ω, that is, for a given h̄,

6We later derive our formal results in a general setting with multiple cities where firms can sell to consumers
everywhere, but there are potentially some additional costs incurred when they sell outside their city, and workers
interact with other workers everywhere, but interactions with workers in other cities are potentially weaker.
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sales increase proportionately with the population of consumers C. However, the larger individual
firm sales associated with a larger C make further entry profitable and, by equation (8), they must
be offset by a lower h̄ to restore zero ex-ante expected profits.7

To understand how firms in different ranges of the productivity distribution are affected by city
size and h̄, note that, from (4) and (6), the price elasticity of demand faced at equilibrium by a firm
with unit labour requirement h can be written as follows:

ε(h) ≡ − p(h)
Q(h)

dQ(h)
dp(h)

=
h̄ + h
h̄− h

. (12)

Demand becomes more price-elastic as h increases or as h̄ decreases. Thus, each firm in the
large city (where h̄ is lower) faces a more elastic demand, and hence charges a lower markup,
p − h = (h̄ − h)/2, than a firm with the same h in the small city. The combination of more
consumers, further entry, and the ensuing lower markups in the large city affects firms’ sales
differently depending on their h.8 In the large city, firms with high productivity, and hence high
markups, enjoy smaller profit margins but larger sales than their small-city counterparts. Low
productivity firms, however, have both smaller profit margins and smaller sales in the large city
than in the small city. In short, product market competition is tougher in a large city than in a small
city, and this affects firms with low productivity and hence low price-cost margins the most. Some
low-productivity firms that would have been able to survive in a small city cannot lower their
prices any further and must exit in the large city. It is this exit at the low-productivity end that
leads to the large-city log productivity distribution being a left-truncated version of the small-city
distribution (see Lemma 1 below for a formal proof).

Case 2 (global product-market competition and local interactions). Panel (b) in Figure 1 plots the dis-
tribution of firms’ log productivities in a city with a large population (continuous line) and in
a city with a small population (dashed line) in the case where every firm competes with the
same intensity with firms from everywhere and workers only interact with workers in their city
(i.e., C1 = C2 and W1 > W2).9 Compared with the distribution in the small city, the large-city
distribution is right-shifted. Since interactions are local, workers in the larger city benefit from

7The reason why a larger measure of firms leads to a lower h̄ is the following. By (3), even if firms were to keep their
prices constant following entry (leaving P unchanged), the business stealing effect of entry (larger ω) is enough to make
the sales of more expensive varieties drop to zero. In turn, by (6), this lower h̄ induces firms to lower their prices which,
by (3), further reduces h̄.

8This is best seen by considering the effect on a firm’s sales Q(h) of a small increase in C. From (4) and (6),
dQ(h)

dC = 1
2γ

[
h̄− h + C dh̄

dC

]
. From the free entry condition of (8), dh̄

dC = −2γs/[C2 ∫ h̄
0 (h̄− h)g(h)dh]. It follows that

dQ(h)
dC > 0 if and only if (h̄ − h) C

2γ

∫ h̄
0 (h̄ − h)g(h)dh > s. The expression on the left-hand side of this inequality is

twice the firm’s markup times ex-ante expected sales. Since there are zero expected ex-ante profits, for firms near the top
of the productivity distribution (those with the lowest values of h and thus highest markup), twice their ex-post markup
times ex-ante expected sales must be higher than the sunk entry cost, and this inequality holds, so their sales increase as
city size increases. For firms near the bottom of the productivity distribution (those with a value of h close to the cutoff
h̄), the inequality fails to hold, so their sales fall as city size increases.

9To facilitate visual comparisons, we re-scale the combined size of the large and small cities from panel to panel to
keep the sets C and W for the small city constant across cases, thus making the distribution of firms’ log productivities in
the small city identical in all four panels. This is done for the purpose of plotting the graph only, and does not change the
qualitative comparison between the small-city and large-city distributions. These graphs are drawn using a log-normal
distribution, but recall that our analytical results are distribution-independent. We use a log-normal distribution for the
graphs because it matches well the empirically-observed distributions presented later in the paper.
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being exposed to a wider range of ideas than workers in the small city and this makes them more
productive. As a result, all large-city firms achieve higher log productivity than their small-city
counterparts (i.e., log productivity φ is higher in the large city for every h). Since product-market
competition is global, all firms can sell to consumers everywhere and this eliminates differences
between cities in the strength of the firm selection mechanism. Hence, the log productivity cut-off
ln [a(W)] − ln(h̄) simply moves rightwards to the same extent as the rest of the log productivity
distribution. Consequently the large-city log productivity distribution is simply a right-shifted
version of the small-city distribution (again, see Lemma 1 below for a formal proof). Thus,
agglomeration acts like the tide that lifts all boats.

Case 3 (local product-market competition and local interactions). Panel (c) in Figure 1 plots the distri-
bution of firms’ log productivities in a city with a large population (continuous line) and in a city
with a small population (dashed line) in the case where firms only sell in their local market and
workers only interact with workers in their city (i.e., C1 > C2 and W1 > W2). Compared with
the distribution in the small city, the large-city distribution is both left-truncated and right-shifted
(again, see Lemma 1 below for a formal proof). With local product-market competition, large-city
markups are lower and this left-truncates the distribution of firms’ log productivities to exactly the
same extent as under case 1. With local interactions, large-city workers are more productive and
this right-shifts the distribution of firms’ log productivities (truncated by firm selection) to exactly
the same extent as under case 2.10

Case 4 (global product-market competition and global interactions). When every firm competes with the
same intensity with firms from everywhere and every worker enjoys interactions with the same
intensity with workers from everywhere (i.e., C1 = C2 and W1 = W2), the distribution of firms’
log productivities in a city with a large population is exactly the same as in a city with a small
population. Panel (d) in Figure 1 plots the probability density function of the distribution of firms’
log productivities, f (φ), in this final case where it is independent of city size. Note that the fact
that the distribution of firms’ log productivities does not depend on city size in this case does not
imply that there are no selection or agglomeration effects. It simply implies that selection and
agglomeration effects are equally strong everywhere. If there were no selection or agglomeration
effects, the distribution of firm productivities would be given by f (φ) = e−φ g

(
e−φ
)
. Relative to

this underlying distribution, the actual distribution of firms’ log productivities in both cities is both
left-truncated and right-shifted.

10The absence of interactions between selection and agglomeration mechanisms is a consequence of having kept the
assumption of quasi-linear preferences of Melitz and Ottaviano (2008), which eliminates income effects in the market for
differentiated varieties. The introduction of income effects would create an interaction between agglomeration and firm
selection that would result in further left truncation of the large-city log productivity distribution. This is because, with
income effects, the log productivity advantages of agglomeration would translate into a larger market for differentiated
varieties in the large city. This would reinforce the increase in local product-market competition caused by the larger
population, and strengthen firm selection. Thus, with income effects, agglomeration would appear as a right shift in
the log productivity distribution, while selection as well as interactions between selection and agglomeration would
appear as a left truncation. More complicated interactions between selection and agglomeration mechanisms would
also appear if the benefits from agglomeration for each worker varied depending on which firm they were working for.
See Section 6.
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Parameterising the strength of selection and agglomeration

For expositional clarity, we have so far focused on the polar possibilities of either local or global
product-market competition and either local or global interactions. We now generalise our analysis
to also consider intermediate cases for both. We do so by parameterising both the spatial decay
of product market competition, creating differences in firm selection across cities, and the spatial
decay of interactions, creating differences in agglomeration economies across cities. As before, we
compare the distribution of log productivities across cities of different size. Suppose we have I

cities. Let us denote the population of city i by Ni and order cities from largest to smallest in terms
of population: N1 > N2 > · · · > NI−1 > NI .

In the case of product-market competition, we can introduce additional costs for selling differ-
entiated varieties in a different city. Suppose that markets are segmented and that selling outside
the city where a firm is located involves iceberg trade costs so that τ (> 1) units need to be shipped
for one unit to arrive at destination. Since firms now potentially sell in all cities, the free entry
condition of equation (8) becomes

Ni

4γ

∫ h̄i

0
(h̄i − h)2g(h)dh + ∑

j 6=i

Nj

4γ

∫ h̄j/τ

0
(h̄j − τh)2g(h)dh = s , (13)

for city i. The first term on the left-hand side captures operational profits from local sales and the
second-term summation the operational profits from out-of-city sales. Note that only city i firms
with marginal costs h < h̄j/τ sell in city j, where h̄j is the cutoff for local firms in j, since city i

firms must be able to cover not just production but also trade costs. Note also that the cases of
purely local or purely global product-market competition discussed above can still be captured
as particular cases. The case of local product-market competition corresponds to τ = ∞, which
turns equation (13) into equation (8) with C = Ni. The case of global product-market competition
corresponds to τ = 1, which turns equation (13) into equation (8) with C = ∑I

j=1 Nj. In addition,
we can now also consider intermediate cases where 1 < τ < ∞.

Regarding interactions, we can think of these as being subject to some spatial decay. Specific-
ally, let us redefine the relevant argument for the interactions function a(·) as the sum of local
population and outside population, with the latter adjusted by some decay factor as in Fujita and
Ogawa (1982) and Lucas and Rossi-Hansberg (2002). This implies that the effective labour supplied
by an individual worker in city i is a(Ni + δ ∑j 6=i Nj), where the decay parameter δ measures the
strength of across-city relative to within-city interactions (0 < δ < 1). From equation (9), the log
productivity of a firm with marginal cost h in city i is given by φ = ln

[
a(Ni + δ ∑j 6=i Nj)

]
− ln(h).

Thus, the gain in log productivity due to interactions in city i (a local measure of the strength of
agglomeration) of equation (11) can be redefined as

Ai ≡ ln

[
a(Ni + δ ∑

j 6=i
Nj)

]
. (14)

The case of local interactions discussed above corresponds to δ = 0, which implies Ai = ln[a(Ni)].
The case of global interactions discussed above corresponds to δ = 1, which implies that Ai =
ln[a(∑I

j=1 Nj)]. In addition, we can now also consider intermediate cases where 0 < δ < 1.
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The distribution of firms’ log productivities still has its probability density function given by
equation (10), which, using subindex i to specify the city, becomes

fi(φ) =

0 for φ < Ai − ln(h̄i) ,
eAi−φ g(eAi−φ)

G(h̄i)
for φ > Ai − ln(h̄i) .

(15)

In anticipation of the econometric approach developed in the next section, it is also useful write
the corresponding cumulative density function, Fi(φ). To do that compactly, we need to introduce
some additional notations. Let

Si ≡ 1− G(h̄i) (16)

denote the proportion of firms that fail to survive product-market competition in city i (a local
measure of the strength of selection). To further simplify notation, let us define

F̃(φ) ≡ 1− G
(
e−φ
)

(17)

as the underlying cumulative density function of log productivities we would observe in all cities
in the absence of any selection (h̄i = ∞, ∀i) and in the absence of any agglomeration (Ai = 0, ∀i).
Without selection (h̄i = ∞, ∀i) all entrants survive regardless of their draw of h. Without agglom-
eration (Ai = 0, ∀i), φ = − ln(h). Equivalently, h = e−φ. Using the change of variables theorem
then yields (17) above. We can then write the cumulative density function of the distribution of
log productivities for active firms in city i as

Fi(φ) = max
{

0,
F̃(φ− Ai)− Si

1− Si

}
. (18)

Relative to the underlying distribution given by (17), agglomeration shifts the distribution right-
wards by Ai while selection eliminates a share Si of entrants (those with lower productivity values).
The next section develops an econometric approach to estimate the relative magnitude across cities
of agglomeration, as measured by Ai, and selection, as measured by Si. The following proposition
contains our main theoretical result, with predictions for how these expressions vary across cities
of different sizes.

Proposition 1. Suppose there are I cities ranked from largest to smallest in terms of population:
N1 > N2 > · · · > NI−1 > NI , that workers are equally productive in any local firm, that
interactions across cities decay by a factor δ, where 0 6 δ 6 1, and that selling in a different
city raises variable costs by a factor τ, where 1 6 τ 6 ∞.

i. Agglomeration leads to the distribution of firms’ log productivities being right-shifted by Ai,
and if δ < 1 this right shift is greater the larger a city’s population: A1 > A2 > . . . > AI−1 >

AI .

ii. Firm selection left-truncates a share Si of the distribution of firms’ log productivities, and if
τ > 1 this truncation is greater the larger a city’s population: S1 > S2 > . . . > SI−1 > SI .
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iii. If there is no decay in interactions across cities, so that δ = 1, then there are no differences
in shift across cities: Ai = Aj, ∀i, j. If there is no additional cost incurred when selling in a
different city, so that τ = 1, then there are no differences in truncation across cities: Si = Sj,
∀i, j.

Proof Consider any two areas i and j such that i < j (and thus Ni > Nj). The extent of the right
shift is Ai in city i and Aj in city j. Using equation (14), 0 6 δ < 1 directly implies Ai > Aj, and
δ = 1 implies Ai = Aj. Turning to selection, the proportion of truncated values of F̃ is Si in city i

and Sj in city j. The free entry condition (13) for cities i and j can be rewritten:

Ni

4γ

∫ h̄i

0
(h̄i − h)2g(h)dh +

Nj

4γ

∫ h̄j/τ

0
(h̄j − τh)2g(h)dh + ∑

k 6=i,k 6=j

Nj

4γ

∫ h̄j/τ

0
(h̄j − τh)2g(h)dh = s ,

(19)

Nj

4γ

∫ h̄j

0
(h̄j − h)2g(h)dh +

Ni

4γ

∫ h̄i/τ

0
(h̄i − τh)2g(h)dh + ∑

k 6=i,k 6=j

Nj

4γ

∫ h̄j/τ

0
(h̄j − τh)2g(h)dh = s .

(20)

Subtracting equation (20) from (19) and simplifying yields:

Ni ν(h̄i,τ) = Nj ν(h̄j,τ) . (21)

where

ν(z,τ) ≡
∫ z

0
(z− h)2g(h)dh−

∫ z/τ

0
(z− τh)2g(h)dh . (22)

It follows from (21) and Ni > Nj that

ν(h̄i,τ) < ν(h̄j,τ) . (23)

Differentiating (22) with respect to z yields:

∂ν(z,τ)
∂z

= 2
[∫ z

0
(z− h)g(h)dh−

∫ z/τ

0
(z− τh)g(h)dh

]
= 2

[
(τ − 1)

∫ z/τ

0
hg(h)dh +

∫ z

z/τ
(z− h)g(h)dh

]
.

(24)

If 1 < τ 6 ∞, then ∂ν(z,τ)/∂z > 0, and thus, by equation (23), h̄i < h̄j. Hence, by equation (16),
Si > Sj. If τ = 1, then by equation (24), ∂ν(z,τ)/∂z = 0, and thus h̄i = h̄j and Si = Sj.

3. Econometric approach

We now develop an econometric approach to estimate the parameters that quantify the importance
of selection and agglomeration in the theoretical model for cities of different sizes. The observable
information is the cumulative distribution of log productivities in each city. Ideally, we would like
to use this information to estimate parameters Ai and Si from equation (18) for each city. How-
ever, this is not possible because the baseline cumulative of log productivities F̃ is not observed.
Nevertheless, the following lemma shows that we can get around this issue by comparing the
distribution of log productivities across two cities of different sizes i and j to difference out F̃ from
equation (18).
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Lemma 1. Consider two distributions with cumulative density functions Fi and Fj. Suppose Fi can
be obtained by shifting rightwards by Ai some underlying distribution with cumulative density
function F̃ and left-truncating a share Si ∈ [0,1) of its values:

Fi(φ) = max
{

0,
F̃(φ− Ai)− Si

1− Si

}
. (25)

Suppose Fj can be obtained by shifting rightwards by a different value Aj 6= Ai the same underly-
ing distribution F̃ and left-truncating a different share Sj 6= Si of its values:

Fj(φ) = max

{
0,

F̃(φ− Aj)− Sj

1− Sj

}
. (26)

Let

A ≡ Ai − Aj , (27)

S ≡
Si − Sj

1− Sj
. (28)

If Si > Sj, then Fi can also be obtained by shifting Fj by A and left-truncating a share S of its values:

Fi(φ) = max
{

0,
Fj(φ− A)− S

1− S

}
. (29)

If Si < Sj, then Fj can also be obtained by shifting Fi rightwards by −A and left-truncating a share
−S

1−S of its values:

Fj(φ) = max

{
0,

Fi(φ + A)− −S
1−S

1− −S
1−S

}
. (30)

Proof See the Appendix.

We are going to use (29) and (30) to get an econometric specification that can be estimated from
the data. An advantage of our approach is that we do not need to specify an ad-hoc underlying
distribution of log productivities F̃, which one cannot observe empirically. A limitation is that
we are not able to separately identify Ai, Aj, Si and Sj from the data, but only A = Ai − Aj

and S = (Si − Sj)/(1 − Sj). In other words, we are able to make statements about the relative
strength of agglomeration economies in large cities compared to small cities and about the relative
strength of firm selection in large cities compared to small cities, but not about the absolute strength
of agglomeration economies or firm selection. Parameter A measures how much stronger is the
right shift (induced by agglomeration economies in the theoretical model) in city i relative to the
smaller city j. In particular, it corresponds to the difference between cities i and j in the strength
of agglomeration-induced productivity gains. Note that our empirical approach also allows for
the possibility that A < 0, in which case there would be less rather than more right shift in larger
cities. Parameter S measures how much stronger is the left truncation (induced by firm selection
in the theoretical model) in city i relative to the smaller city j. In particular, it corresponds to the
difference between cities i and j in the share of entrants eliminated by selection, relative to share
of surviving entrants in city j. Note that our empirical approach also allows for the possibility that
S < 0, in which case there would be less rather than more left truncation in larger cities.
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A quantile specification

To obtain the key relationship to be estimated, we rewrite the two equations (29) and (30) in
quantiles and combine them into a single expression. Assuming that F̃ is invertible, Fi and Fj

are also invertible. We can then introduce λi(u) ≡ F−1
i (u) to denote the uth quantile of Fi and

λj(u) ≡ F−1
j (u) to denote the uth quantile of Fj. If S > 0, equation (29) applies and can be rewritten

as
λi(u) = λj (S + (1− S)u) + A , for u ∈ [0, 1] . (31)

If S < 0, equation (30) applies and can be rewritten as

λj(u) = λi

(
u− S
1− S

)
− A , for u ∈ [0, 1] . (32)

Making the change of variable u→ S + (1− S) u in (32), this becomes

λj (S + (1− S) u) = λi (u)− A , for u ∈
[
−S

1− S
, 1
]

. (33)

We can then write the following equation that combines (31) and (33):

λi(u) = λj (S + (1− S)u) + A , for u ∈
[

max
(

0,
−S

1− S

)
, 1
]

. (34)

Equation (34) cannot be directly used for the estimation because the set of ranks
[
max

(
0, −S

1−S

)
, 1
]

depends on the true value of S, which is not known. We thus make a final change of variable
u→ rS(u), where rS(u) = max

(
0, −S

1−S

)
+
[
1−max

(
0, −S

1−S

)]
u, which transforms (34) into

λi (rS(u)) = λj (S + (1− S)rS(u)) + A , for u ∈ [0, 1] . (35)

Equation (35) provides the key relationship that we wish to fit to the data. It states how the
quantiles of the log productivity distribution in a large city i are related to the quantiles of the
log productivity distribution in a small city j via the relative agglomeration/shift parameter A and
the relative selection/truncation parameter S.

A suitable class of estimators

To estimate A and S, we use the infinite set of equalities given by (35) which can be rewritten in
more general terms as mθ(u) = 0 for u ∈ [0, 1], where θ = (A, S) and

mθ(u) = λi (rS(u))− λj (S + (1− S)rS(u))− A . (36)

We turn to a class of estimators studied by Gobillon and Roux (2008) who adapt to an infinite
set of equalities the results derived by Carrasco and Florens (2000) for an infinite set of moments.
Let m̂θ(u) denote the empirical counterpart of mθ(u), where the true quantiles λi and λj have
been replaced by some estimators λ̂i and λ̂j (see the appendix for details on how these estimators
are constructed). We can then introduce an error minimization criterium based on a quadratic
norm of functions, following Carrasco and Florens (2000). Let L2 denote the set of [0,1]2 integrable
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functions, 〈·,·〉 denote the inner product such that for any functions y and z in L2, we have: 〈y,z〉 =∫ 1
0

∫ 1
0 y(u)z(v)dudv, and ‖ · ‖ denote the corresponding norm. Consider a linear bounded operator

B on L2. Let B∗ denote its self-adjoint, such that we have: 〈By,z〉 = 〈y,B∗z〉. Then, B∗B can be
defined through a weighting function `(·,·) such that: (B∗By) (v) =

∫ 1
0 y(u)`(v,u)du and thus

‖By‖2 =
∫ 1

0

∫ 1
0 y(u)`(v,u)y(v)dudv. Let n = (ni,nj)′, where ni and nj denote respectively the

number of observations of the distributions Fi and Fj. The vector of parameters θ can then be
estimated as

θ̂ = arg min
θ
‖Bnm̂θ‖ , (37)

where Bn is a sequence of bounded linear operators.11 Gobillon and Roux (2008) show that if λ̂i

and λ̂j are some appropriate estimators that are consistent, asymptotically normal and continuous
twice-differentiable, and if the sequence Bn is such that ‖Bnm̂θ‖ → ‖Bmθ‖ as min(ni,nj) → +∞,
where B is a bounded linear operator verifying Bmθ = 0 =⇒ mθ = 0, then the estimator θ̂ defined
by (37) is consistent and asymptotically normal. They also show how to determine the weights
`(v,u) leading to the optimal estimator.

Implementation

While it is possible to compute the weights leading to the optimal estimator, they cannot be used
in practice because they depend on the true value of the parameters θ. Alternatively, we could rely
on a simple weighting scheme such that ` (v,u) = 0 for u 6= v and ` (v,v) = δd where δd is a Dirac
mass. With this weighting scheme, the estimator would simplify to:

θ̂ = arg min
θ

(∫ 1

0
[m̂θ(u)]2du

)
. (38)

This estimator is the mean-square error on mθ . However, it has the undesirable feature that it treats
the quantiles of the two distributions asymmetrically. In particular, it compares the quantiles of
the actual city i log productivity distribution to the quantiles of a left-truncated and right-shifted
city j distribution, when it would also be possible to compare the quantiles of the actual city j

distribution to the quantiles of a modified city i distribution. We thus implement a more robust
estimation procedure that treats the quantiles of the two distributions symmetrically. As a first
step, we derive an alternative set of equations to (35) for this reverse comparison. Making the
change of variable u→ u−S

1−S in (31), this becomes

λj(u) = λi

(
u− S
1− S

)
− A , for u ∈ [S, 1] . (39)

We can then write the following alternative equation to (34) that combines (32) and (39):

λj(u) = λi

(
u− S
1− S

)
− A , for u ∈ [max (0, S) , 1] . (40)

11The following mild assumption is made to ensure that the model described by mθ(u) = 0 for u ∈ [0, 1] is identified:
there exist K ranks (as many as parameters we wish to estimate) ui, . . . ,uK such that the system mθ(ui) = 0 for i = 1, . . . ,K
admits a unique solution in θ.
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Let r̃S(u) = max (0, S) + [1−max (0, S)] u. With a final change of variable u → r̃S(u) on (40), this
provides a new set of equalities m̃θ(u) = 0, for u ∈ [0, 1], where

m̃θ(u) = λj (r̃S(u))− λi

(
r̃S(u)− S

1− S

)
+ A . (41)

Let ˆ̃mθ(u) denote the empirical counterpart of m̃θ(u), where the true quantiles λi and λj have been
replaced by some estimators λ̂i and λ̂j (see the appendix for details). The estimator we actually
use is then

θ̂ = arg min
θ

M(θ) , where M(θ) =
∫ 1

0
[m̂θ(u)]2du +

∫ 1

0

[
ˆ̃mθ(u)

]2du . (42)

In the results below, we report θ̂ = (Â, Ŝ), as well as a measure of goodness of fit R2 = 1 −
M(Â, Ŝ)
M(0, 0) . Standard errors of the estimated parameters are bootstrapped drawing some observations

out of the log productivity distribution with replacement. For each bootstrap iteration, we first
re-estimate tfp for each observation employed in the iteration, and we then re-estimate θ. Finally,
we use the distribution of estimates of θ that results from all bootstrap iterations to compute the
standard errors.

4. Data and TFP estimations

Data

To construct our data for 1994–2002, we merge together three large-scale, French, administrative
data sets from the French national statistical institute (insee).

The first is brn-rsi (‘Bénéfices Réels Normaux’ and ‘Régime simplifié d’imposition’) which
contains annual information on the balance sheet of all French firms, declared for tax purposes.
We extract information about each firm’s output and use of intermediate goods and materials to
compute a reliable measure of value added for each firm and year. We also retain information
about the value of productive and financial assets to compute a measure of capital. This is done
using the sum of the reported book values at historical costs. The sector of activity at the three-digit
level is also available and a unique identifier for each firm serves to match these data with the other
two data sets.

The second data set is siren (‘Système d’Identification du Répertoire des ENtreprises’) which
contains annual information on all French private sector establishments, excluding finance and
insurance. From this data set, we retain the establishment identifier, the identifier of the firm
to which the establishment belongs (for matching with brn-rsi), and the municipality where the
establishment is located. We allocate each municipality to its metropolitan area (‘Aire Urbaine’)
when it is part of one.

The third data set is dads (‘Déclarations Annuelles de Données Sociales’), a matched employer-
employee data set, which is exhaustive during the study period. This includes the number of paid
hours for each employee in each establishment and her two digit occupational category, which
allows us to take labour quality into account. The procedure of Burnod and Chenu (2001) is
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then used to aggregate total hours worked at each establishment by workers in each of three skill
groups: high, intermediate and low skills.

To sum up, for each firm and each year between 1994 and 2002, we know the firm’s value
added, the value of its capital, and its sector of activity. For each establishment within each firm,
we know its location, and the number of hours worked by its employees by skill level.12 We retain
information on all establishments from all firms with 6 employees or more in all manufacturing
sectors and in business services, with the noted exception of finance and insurance. We end up
with data on 153,130 firms and 203,300 establishments observed at least once during the study
period.

TFP estimation

For simplicity of exposition, we have set up the model of Section 2 so that labour is the only input.
However, all results extend trivially to a model with capital and workers with multiple skill levels,
provided technology is homothetic, capital costs are equal at all locations, and from the point of
view of an individual firm multiple types of workers are perfect substitutes (up to a scaling factor
to capture the impact of skills on efficiency units).

For the purpose of estimation, we assume more specifically that the technology to generate
value added at the firm level (Vt) is Cobb-Douglas in the firm’s capital (kt) and labour (lt), and use
t to index time (years). We also allow for three skilled levels, and use ls,t to denote the share of the
firm’s workers with skilled level s:

Vt = (kt)β1
(

lt ∑3
s=1 ςsls,t

)β2
eβ3,t+φt , (43)

where β1, β2 and the three ςs are common to all firms within a sector, β3,t varies by detailed
subsector of that sector, and φt is firm-specific. Taking logs yields

ln(Vt) = β1 ln(kt) + β2 ln(lt) + β2 ln
(

∑3
s=1 ςsls,t

)
+ β3,t + φt . (44)

To linearise (44), we use the approximation in Hellerstein, Neumark, and Troske (1999). If the share
of labour with each skill does not vary much over time or across firms within each sector, so that
ls,t ≈ ζs, then

β2 ln
(

∑3
s=1 ςsls,t

)
≈ β2

[
ln
(

∑3
s=1 ςsζs

)
− 1
]
+ ∑3

s=1 σsls,t , (45)

where σs ≡ β2ςs/(∑3
s=1 ςsζs). Substituting equation (45) into (44) yields:

ln(Vt) = β0,t + β1 ln(kt) + β2 ln(lt) + ∑3
s=1 σsls,t + φt , (46)

where β0,t ≡ β3,t + β2[ln(∑3
s=1 ςsζs)− 1].

We obtain log tfp by estimating equation (46) separately for each sector in level 2 of the
Nomenclature Economique de Synthèse (nes) sectoral classification, which leaves us with 16

12The merged data set contains much more information than is usually available. For instance, us-based research
relies either on sectoral surveys or on five-yearly censuses for which value added is difficult to compute. We instead
have exhaustive annual data. We also have information on the number of hours worked by skill level instead of total
employment as is often the case.
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manufacturing sectors and business services.13 We let β0,t be the sum of a year-specific component
and a sector-specific component at level 3 of the nes classification (which contains 63 subsectors for
our base 16 sectors). Denote by β̂0,t, β̂1, β̂2 and σ̂s the estimates of β0,t, β1, β2 and σs, respectively.
Let φ̂t = ln(Vt)− β̂0,t − β̂1 ln(kt)− β̂2 ln(lt)−∑3

s=1 σ̂sls,t. We then measure log tfp for each firm by
the firm-level average of φ̂t over the period 1994–2002,

φ̂ =
1
T

T

∑
t=1

φ̂t , (47)

where T denotes the number of years the firm is observed in 1994–2002.
For our baseline results, we estimate equation (46) using ordinary least squares (ols). Later, we

report as robustness checks the results obtained with the methods proposed by Olley and Pakes
(1996) and Levinsohn and Petrin (2003) to account for the potential endogeneity of capital and
labour, as well as simple cost share estimates of tfp. Details on how tfp estimates are constructed
in our context using these methods are relegated to the Appendix.

Since data for value added and capital is only available at the firm level, in the baseline results
we restrict the sample to firms with a single establishment (which account for 85 percent of
firms, 68 percent of establishments, and 46 percent of employment). Later, we take advantage
of establishment-level data on hours worked by skill and report as robustness checks results for
all firms, including those with establishments in multiple locations. We do so by estimating the
following relationship between each firm’s log tfp and the set of cities where it has establishments,
separately for each sector:

φ̂ = ∑I
i=1 νili + ε , (48)

where i indices metropolitan areas (there are 364 in France), and li denotes the share of a firm’s
labour (in hours worked) in area i, averaged over the period 1994–2002. Parameter νi is common
to all firms and establishments in area i. Let ν̂i be the ols estimate of νi and ε̂ = φ̂ − ∑I

i=1 ν̂ili.
Establishment-level log tfp is then computed as ν̂i + ε̂. Note that for firms with a single establish-
ment, ν̂i + ε̂ = φ̂ as before.

5. Baseline results

The quantile approach described in Section 3 estimates the amount of left truncation and right
shift that, when applied to one distribution of firms’ log productivities, best approximate an-
other distribution of firms’ log productivities. To implement the approach, after estimating tfp

for mono-establishment firms as described in Section 4 using ols, we must choose which two
distributions to compare. For our baseline estimates, we lump urban areas together based on their
population size. In particular, we compare the distribution of firms’ log productivities in urban

13Unfortunately, we cannot include banking and insurance in our estimation because the location of establishments is
not available for these sectors, which have distinct reporting rules. We also exclude distribution and consumer services
from our main estimations. The assignment of a specific location to distribution (which involves moving goods across
locations) is difficult and the estimation of a production function in consumer services is more problematic (but see the
bottom-right panel of Figure 2 for an illustration from consumer services).
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Table 1: Baseline estimation results, cities with pop.> 200,000 vs. pop.< 200,000

ols, mono-establishments

Sector A S R2 A R2 S R2 obs.

(1) (2) (3) (4) (5) (6) (7) (8)

Food, beverages, tobacco 0.06 0.01 0.90 0.07 0.82 0.03 0.40 22,049
(0.01) ∗ (0.00) ∗ (0.01) ∗ (0.01) ∗

Apparel, leather 0.09 -0.04 0.42 0.05 0.18 -0.01 0.06 5,804
(0.04) ∗ (0.06) ∗ (0.01) ∗ (0.00) ∗

Publishing, printing, recorded media 0.20 -0.03 0.85 0.17 0.73 0.00 0.00 9,236
(0.01) ∗ (0.01) ∗ (0.01) ∗ (0.02)

Pharmaceuticals, perfumes, soap 0.09 -0.04 0.76 0.02 0.01 -0.02 0.58 1,069
(0.05) (0.04) (0.04) (0.01)

Domestic appliances, furniture 0.14 0.00 0.82 0.14 0.81 0.03 0.09 6,362
(0.01) ∗ (0.01) (0.01) ∗ (0.02) ∗

Motor vehicles 0.10 -0.01 0.54 0.08 0.41 0.00 0.02 1,442
(0.02) ∗ (0.02) (0.02) ∗ (0.01)

Ships, aircraft, railroad equipment 0.11 -0.02 0.75 0.08 0.45 -0.01 0.08 1,016
(0.03) ∗ (0.01) (0.03) ∗ (0.02)

Machinery 0.08 -0.01 0.97 0.08 0.93 0.01 0.03 14,736
(0.01) ∗ (0.00) ∗ (0.01) ∗ (0.01)

Electric and electronic equipment 0.08 -0.01 0.97 0.08 0.94 0.02 0.03 5,749
(0.01) ∗ (0.00) (0.01) ∗ (0.02)

Building materials, glass products 0.07 0.00 0.83 0.06 0.81 0.00 0.04 3,196
(0.02) ∗ (0.01) (0.01) ∗ (0.01)

Textiles 0.06 0.00 0.61 0.06 0.57 0.00 0.00 3,365
(0.02) ∗ (0.01) (0.02) ∗ (0.01)

Wood, paper 0.10 -0.01 0.91 0.09 0.85 0.01 0.02 5,872
(0.01) ∗ (0.01) (0.01) ∗ (0.01)

Chemicals, rubber, plastics 0.09 0.00 0.95 0.09 0.95 0.01 0.14 5,337
(0.01) ∗ (0.01) (0.01) ∗ (0.01)

Basic metals, metal products 0.08 0.00 0.97 0.08 0.96 0.01 0.07 14,305
(0.01) ∗ (0.00) (0.01) ∗ (0.01) ∗

Electric and electronic components 0.08 0.00 0.94 0.08 0.93 0.01 0.15 2,579
(0.02) ∗ (0.01) (0.02) ∗ (0.01)

Consultancy, advertising, business services 0.19 -0.02 0.95 0.17 0.88 0.09 0.06 37,041
(0.01) ∗ (0.01) ∗ (0.01) ∗ (0.03) ∗

All sectors 0.11 -0.02 0.71 0.09 0.57 0.00 0.00 139,143
(0.00) ∗ (0.00) ∗ (0.00) ∗ (0.00) ∗
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areas with over 200,000 people with the corresponding distribution in urban areas with less than
200,000 people and rural areas. Later, we report as robustness checks results comparing urban
areas using alternative population size classes, results comparing individual urban areas, results
using employment areas instead or urban areas, split by employment density instead of population
size, and results using alternative methods to estimate tfp.14

Columns (1) and (2) in Table 1 show our baselines estimates of A and S for two-digit manufac-
turing and business service sectors. Recall that S ≡ Si−Sj

1−Sj
, where i corresponds to large cities and

j corresponds to small cities. If S > 0, then the strength of selection increases with city size. If
S = 0, then the strength of selection does not vary with city size. Recall also that A ≡ Ai − Aj. If
A > 0, then the strength of agglomeration increases with city size. If A = 0, then the strength of
agglomeration does not vary with city size. Column (3) in Table 1 reports a pseudo-R2 as defined
in Section 3.

In column (1), A is always positive. Statistical significance at the 5 percent level is marked with
an asterisk next to the bootstrapped standard errors reported in parenthesis. A is significantly
different from zero in all cases but one. For all sectors it takes a value A = 0.11, which implies a 12

percent productivity increase. These results suggest that agglomeration economies are stronger in
large cities than in small cities. Our model shows that the extent to which agglomeration economies
vary across cities of different size is closely related to the extent to which interactions are local or
global (national in this case). Our results are consistent with a situation where interactions are
quite local. This matches the empirical literature looking at the spatial decay of different types of
agglomeration economies (see Rosenthal and Strange, 2004). We postpone the discussion of the
economic significance of our findings until later.

For 11 sectors out of 16, S is not statistically different from zero. It is negative and significant in
four sectors and for all sectors pooled together.15 It is positive and significant in one sector only.
In all cases, however, S remains small. This suggests that there is not much difference between
large and small cities in the strength of selection. Note that this does not imply that selection is not
important. It simply suggests that its importance is similar in cities of different sizes. Our model
shows that the extent to which selection varies across cities of different sizes is closely related to the
extent to which product market competition is local or global (national in this case). Our results are
consistent with a situation where French firms compete with similar intensity on national markets
regardless of their location.

Column (4) in Table 1 reports our estimates of A when we impose the restriction S = 0 (no
difference in the strength of selection between large and small cities). Not surprisingly given how
close to zero the estimates of S in column (2) are, the estimates of A in column (4) are very close

14Whenever one estimates firm-level tfp, measurement errors are likely to result in a few extreme outliers. To
minimise the impact of such outliers in our estimates of truncation and shift, we exclude the 1 percent of observations
with the highest tfp values and the 1 percent of observations with the lowest tfp values in each city size class. It is
important to trim extreme values in both city size classes to avoid biasing the estimate of S. While our estimates lose
some precision when we trim fewer outliers, results are qualitatively unchanged.

15Having negative estimates of S, even if small in absolute value, may seem strange in light of the model. We argue in
Section 7 that it is an artifact of the simple way in which we capture agglomeration economies in these baseline results.
As we shall see, once we generalise our approach, the estimates of S become zero.
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Figure 2: Empirical log productivity distributions in large (solid) and small cities (dashed)

to those in column (1). Column (5) reports the corresponding pseudo-R2 and shows that for most
sectors the fit does not deteriorate too much relative to column (3).

Column (6) in Table 1 reports our estimates of S when we impose the restriction A = 0 (no
difference in the strength of agglomeration between large and small cities). In each and every case
the estimate for S in column (6) is larger than or equal to its corresponding estimate in column
(2). This suggests that if we do not allow agglomeration to vary across cities of different sizes,
we pick up part of the agglomeration effects as variation in selection. Column (7) reports the
pseudo-R2 under the restriction A = 0. A comparison with column (3) shows that fit deteriorates
very substantially in all sectors but one. Overall, the results of columns (4)-(7) reinforce those of
columns (1)-(3) by underscoring the robustness of our finding that agglomeration economies are
stronger in large cities than in small cities and the absence of significant differences in selection
effects.16

16Other estimation methods for tfp, such as the procedures developed by Olley and Pakes (1996) and Levinsohn and
Petrin (2003) and cost shares lead to similar conclusions. Considering all establishments as opposed to only mono-
establishment firms also yields very similar results. Finally, our results are not affected by trimming 2 percent instead
of 1 percent of observations at both extremes of the log productivity distribution. We do not report these results for
our baseline estimation. They are available upon request. Below we report results using these alternative estimation
methods and alternative samples of establishments to assess the robustness of our main results.
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Figure 3: Estimation errors by quantile

We also find broadly similar results for more finely defined sectors, i.e., sectors as defined
by the level 3 of the nes classification. There are two differences however. First, because these
more disaggregated sectors are sometimes small, differences between small and large cities are
less frequently statistically significant than with two-digit sectors. Second, although the general
trend in the data is stronger agglomeration in larger cities and no difference in selection, looking at
more finely defined sectors shows clearly that this pattern is not universal. Figure 2 represents the
distributions of log productivities in small and large cities for four three-digit sectors. These closely
match the four theoretical patterns of Figure 1. Electric generators, engines and transformers
(Panel a) is a rare example of a sector exhibiting stronger selection effects in large cities but no
difference in agglomeration effects. Fabricated metal products (Panel b) illustrates the opposite
and more common pattern of no difference in selection and stronger agglomeration in large cities.
Paints, agro-chemicals, and other chemicals (Panel c) is a case of both stronger agglomeration and
stronger selection effects in large cities. Finally, hairdressing, beauty, and funeral services (Panel
d) provides, as might have been expected, an example of a sector where the distribution of firms’
log productivities is almost exactly the same in small and large cities.

While the pseudo-R2 of column (3) is high (including above 0.90 in a majority of sectors),
looking at the fit of the estimation in more detail suggests that our baseline analysis does not
fully explain the differences between the distributions of log productivities in large and small
cities. Panel (a) in Figure 3 (ignore Panel b for now) provides some insight into what is missing
from our model and empirical approach as we have presented it so far. The graph plots, for all
sectors combined (bottom row of Table 1), the values of m̂θ̂(u). That is, the Figure plots for each
quantile (given by a point on the horizontal axis) the difference between its value in the large city
distribution and the value that results from shifting and truncating the small-city log-productivity
distribution using the estimated values of A and S. There is very marked pattern, where errors
tend to be positive for the lower quantiles and negative for the higher quantiles. This indicates
that, by forcing all establishments to have the same productivity boost from locating in a large city,
we are giving establishments at the lower end of the productivity distribution too large a boost and
establishments at the upper end of the productivity distribution too small a boost. In other words,
the figure indicates that, contrary to what we have assumed so far, more productive establishments
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benefit more from agglomeration. We now extend our model and empirical approach to allow for
this.17

6. When more productive establishments benefit more from agglomeration

So far we have taken the simple view that agglomeration economies raise the log productivity
of all establishments in larger cities by the same amount. We now generalise our theoretical and
empirical frameworks to allow the magnitude of agglomeration economies to be systematically
related not just to city size but also to individual productivity. In particular, we conjecture that,
while agglomeration economies raise the productivity of all firms in larger cities, they raise the
productivity of the most productive firms to a greater extent.

Extending the model

Let us thus relax the assumption that workers are equally productive regardless of the firm they
work for. Suppose instead that workers are more productive when they work for a more efficient
firm (i.e., one with a lower h) and that this effect is enhanced by interactions with other workers.
In particular suppose that the effective units of labour supplied by an individual worker in their
unit working time are a(Ni + δ ∑k 6=i Nk)h−(Di−1), where

Di ≡ ln

[
d(Ni + δ ∑

k 6=i
Nk)

]
, (49)

d(0) = 1, d′ > 0 and d′′ < 0 (the model seen up until this point was equivalent to assuming
Di = 1). In this case, the natural logarithm of the productivity of a firm with unit cost h in city i is
given by

φ = ln
(

Q
l

)
= Ai − Di ln(h) . (50)

We can then write the cumulative density function of the distribution of log productivities for
active firms in city i as

Fi(φ) = max

0,
F̃
(

φ−Ai
Di

)
− Si

1− Si

 . (51)

Relative to the underlying log productivity distribution F̃, agglomeration both dilates the distribu-
tion by a factor Di and shifts the distribution rightwards by Ai, while selection eliminates a share Si

of entrants (those with lower productivity values). Proposition 1 can then be rewritten as follows.

Proposition 1’. Suppose there are I cities ranked from largest to smallest in terms of population:
N1 > N2 > · · · > NI−1 > NI , that workers are more productive when they work for a more

17It is also worth noting that, regardless of the general downward-sloping error pattern, errors for the first few
quantiles are negative before quickly becoming positive above the first 2 percent of quantiles. This is a sign that the
small negative value estimated for S (S = −0.02) leads to a very bad fit at the very bottom of the distribution even
if it helps improve the overall fit. We return to this issue below, where we argue that not allowing more productive
establishments to get an additional productivity boost in large cities results in a downward bias for S as well as in an
upward bias for A.
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Figure 4: Log-productivity distributions in large (solid) and small cities (dashed)

efficient (lower h) firm and that this effect is enhanced by interactions, that interactions across
cities decay by a factor δ, where 0 6 δ < 1, and that selling in a different city raises variable costs
by a factor τ, where 1 6 τ 6 ∞.

i. Agglomeration leads to the distribution of log productivities being dilated by a factor Di and
right-shifted by Ai, and if δ < 1 this dilation and right shift are both greater the larger a city’s
population: D1 > D2 > . . . > DI−1 > DI and A1 > A2 > . . . > AI−1 > AI .

ii. Firm selection left-truncates a share Si of the distribution of log productivities, and if τ > 1
this truncation is greater the larger a city’s population: S1 > S2 > . . . > SI−1 > SI .

iii. If there is no decay in interactions across cities, so that δ = 1, then there are no differences
in dilation nor in shift across cities: Di = Dj and Ai = Aj, ∀i, j. If there is no additional
cost incurred when selling in a different city, so that τ = 1, then there are no differences in
truncation across cities: Si = Sj, ∀i, j.

Proof Consider any two areas i and j such that i < j (and thus Ni > Nj). The dilation factor is
Di in cities i and Dj in city j while the extent of the right shift is Ai in city i and Aj in city j. If
0 6 δ < 1, by equation (49), Di > Dj and, by equation (14), Ai > Aj. If instead δ = 1, by the same
two equations, Di = Dj and Ai = Aj. The proportion of truncated values of F̃ is Si in city i and Sj

in city j. The free entry conditions of equations (19) and (20) still apply. If 1 < τ 6 ∞, by equation
(24), h̄i < h̄j and thus, by equation (16), Si > Sj. If τ = 1, by the same two equations, h̄i = h̄j and
thus Si = Sj.

Panel (a) of Figure 4 re-draws Panel (b) of Figure 1 for the full model. It plots the distribution
of firms’ log productivities in a city with a large population (solid line) and in a city with a small
population (dashed line) with global product-market competition and local interactions (i.e., when
there are stronger agglomeration economies in large cities than in small cities but the same strength
of selection in both). The difference with respect to Panel (b) of Figure 1 is that more productive
firms now benefit even more from locating in large cities, so that stronger agglomeration economies
get reflected in both a right shift and a dilation of the log-productivity distribution. This can be
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seen graphically in the peak for the large city being lower and in the gap between the distributions
getting larger as we move towards the right. Panel (b) of Figure 4 plots the actual distribution of
log productivities in large cities (urban areas with over 200,000 people, solid line) and small cities
(urban areas with less than 200,000 people and rural areas, dashed line) for all sectors together us-
ing ols tfp estimates. We can see it looks remarkably similar to the theoretical benchmark in Panel
(a) of Figure 4. To show more formally that the extended model is better at capturing differences
in productivity between cities of different sizes, we now extend our econometric approach.

Extending the econometric approach

We now show how to incorporate dilation into our econometric approach. The following gener-
alization of Lemma 1 shows that, by comparing once again the distribution of log productivities
across two cities of different sizes i and j, we can difference out F̃ from equation (51).

Lemma 1’. Consider two distributions with cumulative density functions Fi and Fj. Suppose Fi can
be obtained by dilating by a factor Di and shifting rightwards by Ai some underlying distribution
with cumulative density function F̃ and also left-truncating a share Si ∈ [0,1) of its values:

Fi(φ) = max

0,
F̃
(

φ−Ai
Di

)
− Si

1− Si

 . (52)

Suppose Fj can be obtained by dilating by a different factor Dj 6= Di and shifting rightwards by
a different value Aj 6= Ai the same underlying distribution F̃ and also left-truncating a different
share Sj 6= Si of its values:

Fj(φ) = max

0,
F̃
(

φ−Aj
Dj

)
− Sj

1− Sj

 . (53)

Let

D ≡ Di

Dj
, (54)

A ≡ Ai − DAj , (55)

S ≡
Si − Sj

1− Sj
. (56)

If Si > Sj, then Fi can also be obtained by dilating Fj by D, shifting it by A, and left-truncating a
share S of its values:

Fi(φ) = max

0,
Fj

(
φ−A

D

)
− S

1− S

 . (57)

If Si < Sj, then Fj can also be obtained by dilating Fj by 1
D , shifting it rightwards by − A

D and
left-truncating a share −S

1−S of its values:

Fj(φ) = max

{
0,

Fi (Dφ + A)− −S
1−S

1− −S
1−S

}
. (58)

25



Proof See the Appendix.

To estimate the set of parameters θ = (A, D, S), we first rewrite (57) and (58) in quantiles. If
S > 0, equation (57) applies and can be rewritten as

λi(u) = Dλj (S + (1− S)u) + A , for u ∈ [0, 1] . (59)

If S < 0, equation (58) applies and can be rewritten as

λj(u) =
1
D

λi

(
u− S
1− S

)
− A

D
, for u ∈ [0, 1] . (60)

Performing on (57) and (58) exactly the same steps we performed on (29) and (30) to obtain (36)
and (41) yields:

mθ(u) = λi (rS(u))− Dλj (S + (1− S)rS(u))− A , (61)

m̃θ(u) = λj (r̃S(u))− 1
D

λi

(
r̃S(u)− S

1− S

)
+

A
D

. (62)

The estimator we use is still given by (42), where m̂θ(u) and ˆ̃mθ(u) still denote the empirical
counterparts of mθ(u) and m̃θ(u), now redefined in (61) and (62).

7. Main empirical results

For our main results, we rely again on tfp estimated as described in Section 4. Relative to our
baseline results, we now estimate how the distribution of firms’ log productivities in large cities is
best approximated by shifting, dilating and truncating the distribution of firms’ log productivities
in small cities. We now estimate a shift parameter, A, a dilation parameter, D, and a truncation
parameter, S, comparing large cities (urban areas with over 200,000 people) and small cities (urban
areas with less than 200,000 people and rural areas) for 16 manufacturing and business service
sectors and all sectors together.

Columns (1), (2), and (3) of Table 2 present our main results for A, D, and S. Recall that, in
the extended model that serves as a basis for these main results, greater agglomeration economies
in large cities result in the distribution of log productivities in large cities being both right shifted
and dilated relative to the distribution in small cities, i.e., in A > 0 and D > 1. The value of A

corresponds to the average increase in log productivity that would arise in large cities relative to
small cities absent any selection.18 When A > 0, values of D above unity are evidence that ag-
glomeration economies in large cities benefit more the more productive firms, whereas values of D

below unity would indicate that agglomeration economies benefit less the more productive firms.
As in the baseline, positive values of S correspond to the distribution of firms’ log productivities in
large cities being more truncated than in small cities, whereas negative values correspond to more
truncation in small cities.

18Note that we normalise our log-tfp estimates so that our estimates of A in Table 2 are directly comparable with
those of Table 1. This involves choosing units of value added so that average log-tfp in small cities is zero, which affects
neither D nor S.
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Table 2: Main estimation results, cities with pop.> 200,000 vs. pop.< 200,000

ols, mono-establishments

Sector A D S R2 obs.

(1) (2) (3) (4) (5)

Food, beverages, tobacco 0.07 0.94 0.00 0.95 22,049
(0.00) ∗ (0.02) ∗ (0.00)

Apparel, leather 0.04 1.37 0.01 0.98 5,804
(0.01) ∗ (0.05) ∗ (0.01)

Publishing, printing, recorded media 0.17 1.26 0.00 0.98 9,236
(0.01) ∗ (0.04) ∗ (0.00)

Pharmaceuticals, perfumes, soap 0.05 1.19 -0.01 0.91 1,069
(0.05) (0.11) (0.04)

Domestic appliances, furniture 0.13 1.22 0.01 0.98 6,362
(0.01) ∗ (0.04) ∗ (0.01) ∗

Motor vehicles 0.08 1.29 0.01 0.80 1,442
(0.03) ∗ (0.14) ∗ (0.03)

Ships, aircraft, railroad equipment 0.10 1.09 -0.01 0.81 1,016
(0.03) ∗ (0.18) (0.03)

Machinery 0.08 1.04 0.00 0.98 14,736
(0.01) ∗ (0.03) (0.00)

Electric and electronic equipment 0.08 1.02 0.00 0.97 5,749
(0.01) ∗ (0.05) (0.01)

Building materials, glass products 0.06 1.06 0.00 0.89 3,196
(0.02) ∗ (0.06) (0.02)

Textiles 0.05 1.14 0.00 0.92 3,365
(0.01) ∗ (0.08) ∗ (0.01)

Wood, paper 0.09 1.11 0.00 0.99 5,872
(0.01) ∗ (0.05) ∗ (0.01)

Chemicals, rubber, plastics 0.08 1.04 0.00 0.96 5,337
(0.01) ∗ (0.04) (0.01)

Basic metals, metal products 0.08 1.06 0.00 1.00 14,305
(0.01) ∗ (0.02) ∗ (0.00)

Electric and electronic components 0.08 0.99 0.00 0.94 2,579
(0.02) ∗ (0.07) (0.03)

Consultancy, advertising, business services 0.19 1.05 -0.01 0.96 37,041
(0.02) ∗ (0.04) (0.03) ∗

All sectors 0.09 1.22 0.00 1.00 139,143
(0.00) ∗ (0.01) ∗ (0.00)
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In column (1) of Table 2, A is always positive and, like in Table 1, it is significant at 5 percent
in all cases but one. The only difference with Table 1 is that the estimates for A are now slightly
lower. For instance, when considering all sectors, we find A = 0.09 in Table 2 whereas A = 0.11
for the baseline in Table 1. Column (2) in Table 2 reports our estimates of D. In eight sectors D

is statistically different from unity. For seven of these sectors (and for all sectors together), D is
above unity. In only one of these sectors, D is below unity. In the other sectors, D is not statistically
different from unity although the point estimates are usually above one. There is thus a tendency
for the distribution of firms’ log productivities to be more dilated in larger cities for about half
the sectors and for all sectors combined. With A > 0, the finding that D is often above unity is
indicative that it is the most productive firms that benefit the most from agglomeration. For all
sectors, A = 0.09 and D = 1.22 imply that firms are on average 9 percent more productive in large
cities but that this productivity advantage is 14 percent for firms at the first quartile and only 5

percent for firms at the bottom quartile.19

Turning to S in column (2), there is only one case of a sector, domestic appliances and furniture,
with a positive and significant value for S, although this value is small at 0.01. There is also only
one case,consultancy, advertising, and business services, with a negative and significant value for
S, again small at −0.01. In all other cases, the estimated value of S is not significantly different
from zero. This lack of significance is not due to imprecise estimates. On the contrary, the standard
errors for S are small, like the standard errors for A. Adding to this, we note that in 11 cases out
of 17 (including all sectors combined), the estimated value for S is precisely 0.00. These results
provide even stronger evidence than our baseline results that there are no differences between
small and large cities in the truncation of the distribution of firms’ log productivities. Market
selection appears to have a similar intensity across cities in France irrespective of their size.

To summarise, firms are more productive in large cities. However, this is not because tougher
competition makes it more difficult for the least productive firms to survive. The productivity
advantages of large cities arise because agglomeration economies boost the productivity of all
firms, and in about half of the sectors this increase in productivity is strongest for the most
productive firms.

More generally, a comparison between Tables 1 and 2 suggests that it is important to allow for
more productive firms to benefit more from agglomeration. When one fails to do so, as in our
baseline results of Table 1, estimates of A and S become biased as they attempt to approximate
a dilation. In particular, when we do not allow for D > 1, we tend to overestimate A and
underestimate S (the latter even becoming negative in several cases). It is also clear from the
comparison of Tables 1 and 2 that the fit is better when considering A, D, and S instead of only A

and S. Unsurprisingly, the improvement in the fit is strongest for those sectors with strong dilation.
For instance, in Apparel and leather, the pseudo-R2 goes from 0.42 to 0.98 when adding D to the
estimation. Overall, the fit in column (4) of Table 2 is very good. The pseudo-R2 is always above

19By shifting, dilating and truncating the small city distribution using the estimated values of A, D, and S, we obtain
a predicted productivity advantage of 4.6 percent for firms at the bottom quartile and 14.1 percent for firms at the top
quartile. In the empirical distribution for large cities, we find that these advantages are 4.7 percent and 13.9 percent,
respectively. For the bottom and top deciles of the large city distribution and relative to the small city distribution, we
find productivity advantages of 0.9 percent and 21.1 percent, respectively.
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Table 3: Robustness, cities with pop.> 200,000 vs. pop.< 200,000, alternative estimation methods
and alternative samples

Method A D S R2 obs.

(1) (2) (3) (4) (5)

all sectors, mono-establishments

Ordinary Least Squares 0.09 1.22 0.00 1.00 139,143
(0.00) ∗ (0.01) ∗ (0.00)

Olley-Pakes 0.08 1.10 0.00 0.98 56,920
(0.01) ∗ (0.04) ∗ (0.00) ∗

Levinsohn-Petrin 0.09 1.10 0.00 1.00 101,714
(0.00) ∗ (0.01) ∗ (0.00)

Cost shares 0.07 1.20 0.00 0.98 139,143
(0.00) ∗ (0.01) ∗ (0.00)

all sectors, all establishments

Ordinary Least Squares 0.09 1.12 0.00 1.00 199,235
(0.00) ∗ (0.00) ∗ (0.00) ∗

Olley-Pakes 0.10 1.10 0.01 0.99 97,246
(0.00) ∗ (0.00) ∗ (0.00) ∗

Levinsohn-Petrin 0.11 1.04 0.00 0.93 155,106
(0.00) ∗ (0.00) ∗ (0.00) ∗

Cost shares 0.08 1.10 0.00 1.00 199,235
(0.00) ∗ (0.00) ∗ (0.00) ∗

0.80 and it is even above 0.95 in a majority of sectors and very close to 1.00 for all sectors combined.
The importance of accounting for the greater benefit of agglomeration economies for large firms

is perhaps most clearly seen when one compares the plots of estimation errors by quantile in
the two panels of Figure 3. Panel (a) corresponds to our baseline results, and it was the clear
downward-sloping pattern in this panel that lead us to add parameter D to the estimation. Panel
(b) corresponds to our main results and plots the difference between the value of each quantile in
the large city distribution and the value of the same quantile in the distribution that results from
shifting, dilating, and truncating the small-city log-productivity distribution using the estimated
values of A, D, and S (the estimated value of S being in fact zero, thus leading to no truncation).
Estimation errors are greatly reduced relative to those of Panel (a) and the clear downward-sloping
pattern apparent in Panel (a) is gone. In fact errors in Panel (b) are almost uniformly zero except
for a little wiggle at the both extremes, where productivity values are more scattered and the fit
between the distributions inevitably loses precision.

Robustness

To assess the strength of the findings of Table 2, we now turn to a series of robustness checks.
First, one might question our tfp estimates. While ols is arguably the most transparent method
to estimate tfp, it does not account for the possible simultaneous determination of productivity
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and factor usage. In the top half of Table 3, we report results for all sectors combined using
four alternative methods to estimate tfp. The first line of results in Table 3 reports the same ols

results as in the last line of Table 2 to ease comparisons. The next line reports results for the
same estimation of A, D, and S using the approach proposed by Olley and Pakes (1996) instead
of ols. The Olley-Pakes estimate of A is very similar to its corresponding ols value, 0.08 instead
of 0.09. The estimates of S are also very close tot 0.00 in both cases. The only difference when
using Olley-Pakes is that the tiny amount of truncation (the estimated parameter is S = 0.004) is
statistically significant whereas it is insignificant with ols. Finally, there is a small difference for
the dilation parameter D. It is equal to 1.10 when using Olley-Pakes against 1.22 with ols. Overall
the differences between ols and Olley-Pakes tfp are small and could be due to the substantially
smaller sample size with Olley-Pakes. The number of establishments used for the estimation drops
from 139,143 with ols to 56,920 with Olley-Pakes. This is due to the need to observe establishments
over time in the latter to compute investment. Estimating tfp using the method proposed by
Levinsohn and Petrin (2003) in the third line of results in Table 3 yields estimates that are very
similar to those of Olley-Pakes tfp. The fourth line reproduces the estimation of A, D, and S when
the underlying tfp is estimated using a simple cost-share approach.20 The results are again very
similar. While we do not report detailed sectoral results for these alternative tfp estimations, we
note that they are close to the results reported in Table 2.

The bottom half of Table 3 replicates the same four estimations of A, D and S as the first
panel but this time considering all establishments, affiliated and unaffiliated, instead of only
mono-establishment firms. For ols tfp, the results are very close to those with mono-establishment
firms, except for less dilation in big cities. The next three lines report results for the alternative
approaches to tfp estimations as described above. The results are very close to their corresponding
results for mono-establishments firms in the first panel of the same table. They are also close to
those obtained with ols tfp. Overall we conclude that neither the sample of establishment we use
nor the specific method we implement to estimate tfp have much bearing on our results.

Table 4 reports additional results using first a different zoning and then different urban group-
ings. The first line reproduces again our main results comparing urban areas with over 200,000

people and urban areas with less than 200,000 people and rural areas for all sectors together.
The second line of results in that table repeats the same estimation of A, D, and S (ols, all
sectors, mono-establishments), but compares employment areas with above and below median
employment density instead of urban areas with above and below 200,000 people. Employment
area boundaries are drawn to capture local labour markets on the basis of commuting patterns
whereas urban area boundaries are drawn to capture cities. While the total number of areas
is roughly similar (341 contiguous employment areas instead of 364 urban areas and the rural
areas that surround them), differences are substantial. For instance, Greater Paris is classified as
a single urban area but is made up of 16 separate employment areas. Nevertheless, the estimated
coefficients for A, D, and S are very similar. The fit is also very good. Table 5 in Appendix D reports

20We do not use the method proposed by Syverson (2004) using instrumented cost shares. This approach, which uses
local demand shocks as instruments, is valid only for industries with very localised markets. It is not suitable for a
broad cross-section of sectors nor when pulling all sectors together.
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Table 4: Robustness, alternative comparisons

ols, all sectors, mono-establishments

Comparison A D S R2 obs.

(1) (2) (3) (4) (5)

Cities with pop. > 200,000 vs. pop.< 200,000 0.09 1.22 0.00 1.00 139,143
(0.00) ∗ (0.01) ∗ (0.00)

Employment areas above vs. below median density 0.09 1.21 0.00 1.00 139,143
(0.00) ∗ (0.01) ∗ (0.00)

Paris vs. cities with pop. 1–2 million 0.12 1.13 0.00 0.98 47,480
(0.00) ∗ (0.02) ∗ (0.00)

Cities with pop. 1–2 million vs. pop. 200,000–1 million 0.04 1.05 0.00 0.95 37,443
(0.00) ∗ (0.02) ∗ (0.00)

Cities with pop. 200,000–1 million vs. pop. < 200,000 0.01 1.09 0.00 0.97 91,666
(0.00) ∗ (0.01) ∗ (0.00)

Paris vs. Lyon (pop. 10,381,376 vs. 1,529,824) 0.09 1.13 0.00 0.92 41,738
(0.01) ∗ (0.03) ∗ (0.01)

Lyon vs. Grenoble (pop. 1,529,824 vs. 486,022) 0.03 1.05 0.00 0.62 6,925
(0.01) ∗ (0.05) (0.01)

Grenoble vs. Troyes (pop. 486,022 vs. 168,605) 0.05 1.11 0.01 0.86 1,943
(0.02) ∗ (0.09) (0.02)

detailed, sector by sector, results for French employment areas to compare with those of Table 2.
The results are very close. We conclude that using two groups of cities according to population size
or two groups of employment areas according to employment density yields very similar results.

The next three lines of Table 4 return to the urban zoning but divide French cities and towns
into four groups instead of just two. They are Paris, other cities with population above one million
(Lyon, Marseille, and Lille), cities with population between 200,000 and one million, and the rest
of the country. Starting with the estimate of A, average tfp for establishments located in Paris is
about 12 percent higher than for establishments in other cities with a population above one million
(the population of Paris is between six and ten times larger). There is also a sizeable gap between
these three other large cities with population above one million and cities with population between
200,000 and one million (the estimate for A is about one third as large but then so is roughly the
gap in terms of average population). Finally the gap between the last two groups is small but
nonetheless statistically significant. Turning to the dilation parameter D, this remains significantly
above unity when considering this more detailed grouping of cities. The distribution of firms’ log
productivities appears more dilated in larger cities than in smaller cities when considering any
two consecutive groups of cities, capturing once again the larger boost for the most productive
firms. Finally, regarding the truncation parameter S, our previous results are confirmed with no
difference in market selection between any two consecutive groups of cities.

Grouping cities, as we have done so far, is useful because it ensures that we have enough
observations to estimate parameters accurately and reduces the impact of idiosyncrasies associated
with any particular city. Nevertheless, we now report the in last three lines of Table 4 results for
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pairwise comparisons of individual cities that are illustrative of our general results. The four cities
used in these comparisons are Paris (the largest, with a population above 10 million), Lyon (the
second largest, with a population around 1.5 million), Grenoble (about half a million), Troyes (a
smaller city, with a population below 200,000). Although the number of observations becomes
small for the comparison between Grenobles and Troyes, the estimate of A remains significant. A
trebling of population between Troyes and Grenoble or between Grenoble and Lyon is associated
with a 3 to 5 percent increase in average tfp. The productivity gap reflected in the estimate of A

for the comparison between Paris and Lyon is of the same magnitude, once we account for the fact
that Paris is larger than Lyon by a factor of nearly seven. As would be expected in light of previous
results, there are no differences in the strength of selection. Note also that the fit deteriorates in
this last part of Table 4, since we must work with a much smaller number of observations for the
last two rows comparing individual cities.

8. Discussion

The consequences of unobserved prices

As is often the case in the estimation of production functions, we do not observe prices and estim-
ate tfp by studying how much value (instead of physical output) an establishment can produce
with given inputs. Even if prices were observed, it would be unclear whether higher prices reflect
higher price markups or higher quality products, that is the ability of firms to produce more value
out of the same inputs.21

While we cannot solve this missing price problem (and the related quality issue), we now show
that, to the extent it may affect our estimates, it cannot be driving our key results. In fact, if
anything, it would work against us by leading us to underestimate the effects of agglomeration
(greater shift and dilation in larger cities). The inability to observe prices implies that our estimated
log productivities do not capture the physical quantity of output relative to inputs, but instead the
value of output relative to inputs. Expressed in terms of our model, we do not measure φ, as given
by equation (50), but instead

ψ = ln
(

pQ
l

)
= ln(p) + Ai − Di ln(h) = ln(p) + φ . (63)

Thus, by not taking prices out, we are shifting log productivities rightwards by the value of log
prices, ln(p). The problem is that log prices are systematically related both to city size (through
h̄) and to individual productivity (through h). Recall that, by equation (6), prices are given by
p = 1

2 (h + h̄).

21To solve these two problems, a first possibility is to focus on homogeneous goods for which quantities are directly
observed (Syverson, 2004, Collard-Wexler, 2007, Foster, Haltiwanger, and Syverson, 2008). An alternative is to focus
on specific industries with localised markets for which direct measures of quality are available, like newspapers and
restaurants (Berry and Waldfogel, 2006). These two solutions can only be applied to a small number of industries. The
last alternative in the literature is to consider detailed product-level information, including prices, to recover the price
markup of firms and back up their ‘true’ productivity (De Loecker, 2007). With this approach, to disentangle whether
higher prices reflect larger markups or superior quality, one still has to make specific assumptions about how quality
is produced and about the functional form of demand (e.g., firms selling to consumers with a constant elasticity of
substitution across products).
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In terms of the relationship with city size,

∂ ln(p)
∂h̄

=
1

h + h̄
> 0 . (64)

If h̄ differs across cities, then by looking at ψ instead of φ we are overestimating log productivities
for every for h, but we are doing so by more in smaller cities (where h̄ is then larger). Hence one
consequence of not observing prices is that we may underestimate A, the parameter capturing the
common shift in the log productivity distribution of large cities relative to small cities.

In terms of the relationship with individual productivity,

∂2 ln(p)
∂h̄ ∂h

= − 1
(h + h̄)2

< 0 . (65)

Thus, if h̄ differs across cities, the problem of underestimating log productivities in large versus
small cities is greater for the most productive firms. Hence, another consequence of not observing
prices is that we may underestimate D, the parameter capturing to what extent more productive
firms get an extra productivity boost from locating in large cities.

To sum up, if h̄ differs across cities (which necessarily implies S 6= 0), then by not observing
prices we will underestimate the consequences of agglomeration (the shift captured by A and
the dilation captured by D). However, recall that our results show that S = 0 for all sectors
combined and for nearly all individual sectors. Note also that not observing prices does not affect
the estimation of S (the value of log tfp at which each distribution might be left-truncated changes,
but the share S of establishments in the small city distribution that are truncated out of the large
city distribution does not). Thus, our finding that S = 0 also implies that estimating tfp through
value added does not bias our estimates of A and D.

A comparison with approaches based on summary statistics

A key innovation of our approach is that we simultaneously consider agglomeration economies
and market selection as possible causes of the productivity advantages of large cities using the
entire distribution of firm log productivities. While this makes a comparison of our findings with
those in the literature difficult, we now briefly relate our results to previous contributions studying
either agglomeration economies or market selection alone on the basis of summary statistics.

Starting with Sveikauskas (1975), the empirical literature on agglomeration typically estimates
the elasticity of some measure of average productivity, like average tfp, with respect to some meas-
ure of local scale, such as total population or employment density. More recent studies have paid
particular attention to addressing two potential problems for identifying agglomeration economies
with that approach. First, it is possible that the higher productivity of individual establishments
is a cause rather than a consequence of larger or denser cities. This could happen because more
productive cities tend to attract more workers and firms and, as a result, become larger and denser.
It is also possible that size and productivity are simultaneously determined. This could happen if
there is some local characteristic that is correlated with both size and productivity. Starting with
Ciccone and Hall (1996), the standard way to tackle this potential problem is to use instrumental
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variables when regressing average productivity on local size or density. The main finding is that
reverse causality or simultaneity is only a minor issue in practice. A second identification issue
is that more productive workers may sort into denser areas. This could happen if skilled workers
have a stronger preference for the amenities typically found in larger cities or if larger cities provide
greater productive benefits for more skilled workers. The standard way to deal with this issue is
to use detailed data on worker characteristics or even to exploit a panel to incorporate individual
fixed effects in a regression of individual wages on city size or density (Glaeser and Maré, 2001,
Combes, Duranton, and Gobillon, 2008). This issue of endogenous labour quality turns out to be
substantially more important in practice than endogenous labour quantity. In light of this, we take
advantage of having information on the hours worked by each employee in each establishment
and their detailed occupational code, to incorporate detailed labour quality into our tfp estimation.

We can compare the magnitude of agglomeration economies that we find with that of earlier
studies looking at agglomeration alone. We do this by turning our estimate of A (the common
shift in productivity of large city establishments relative to their small city counterparts) into
an elasticity of average tfp with respect to density. An average employee in a French city with
population above 200,000 works in a municipality 10.5 times as dense as an average person in the
rest of the country. This ratio of 10.5 implies that our estimate of A = 0.09 for all sectors combined
in Table 2 is equivalent to an elasticity of tfp with respect to employment density of 0.038. Using
the same French data as we do but quantifying agglomeration economies by the usual approach of
regressing mean tfp for French employment areas on employment density in those areas, Combes
et al. (2009) find an elasticity of 0.035. More broadly this estimate of 0.038 is within the usual range
of between 0.02 and 0.10. The main conceptual difference of our approach with respect to this
literature on agglomeration is that we take into account that the higher average productivity in
large cities could be caused by stronger selection as well as by stronger agglomeration economies.

Turning to market selection, existing approaches are harder to compare to ours. Our model
shares with other models relating selection to market size, such as Syverson (2004) and Melitz
and Ottaviano (2008), the prediction that tougher competition leads to a left truncation of the
distribution of productivity in large cities relative to small cities. Unfortunately, detecting left
truncation on the basis of summary statistics such as the mean or variance of firms’ productivity is
not straightforward. Greater left truncation increases average productivity, but so does any model
of agglomeration. Both selection and agglomeration can also explain an increase in the median
or the bottom decile of local productivity. In the model of Syverson (2004), left truncation also
implies a decrease in the variance of productivities. We note that this result depends crucially on
distributional assumptions.22 Furthermore, it is possible that the strength of both selection and
agglomeration increase with city size in certain sectors. Even if the shape of the distribution was
such that truncation reduced dispersion, agglomeration could simultaneously increase dispersion
through a dilation of the distribution, and thus make the separation of selection and agglomeration

22The result that the variance of productivity increases with left truncation holds in Syverson’s model and, more
generally, for productivity distributions with log-concave density. However, this result would be reversed if one
considered instead a productivity distribution with log-convex density, such as the Pareto distribution commonly
used in this literature (on the relationship between the variance of a left truncated distribution and log-concavity and
log-convexity, see Heckman and Honore, 1990).
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based on dispersion measures alone very difficult. A key difference of our approach is that we con-
sider simultaneously selection and agglomeration and look at all the moments of the productivity
distributions, so that we do not rely on particular distributional restrictions. Finally, Syverson
focuses on one sector, ready-made concrete, chosen because of very particular characteristics. We
look instead at a broad cross-section of sectors.23

Given these differences with existing approaches, a detailed comparison of results would not be
informative. Instead we now ask how large selection effects would need to be in our data to gen-
erate the differences in average productivity that we observe in the absence of any agglomeration
economies. To conduct this exercise we solve for S so as to equalise mean productivity in small
and large cities with A = 0 and D = 1. We find that to explain a difference in mean log tfp of 0.09
between cities with population above and below 200,000 (as we have here for all sectors), S should
be equal to 0.14. When doing the same calculation sector by sector we find that selection effects
of similar magnitude would be needed to explain observed differences in mean productivity. Put
differently, for selection effects to be the main force at play behind existing differences in average
productivity across cities, they would need to be a full order of magnitude larger than our current
estimates.

9. Concluding comments

To assess the relative importance of local agglomeration effects and market selection to explain
the higher productivity of firms in larger cities, we nest a standard model of agglomeration with
a generalised version of the firm selection model of Melitz and Ottaviano (2008). The main pre-
diction of our model is that stronger selection in larger cities left-truncates the firms’ productivity
distribution while stronger agglomeration right-shifts and dilates it. A similar prediction would
emerge from a much broader class of models nesting agglomeration and selection provided the
underlying distribution of the firms’ productivities is the same everywhere and selection effects
can be separated from agglomeration effects. An important benefit of our structural approach
is that it allows for a tight parametrisation of the strength of agglomeration effects relative to
selection.

To implement this model on exhaustive French establishment-level data, we develop a new
quantile approach that allows us to estimate a relative change in left truncation, shift, and dilation
between two distributions. When applied to distributions of firms’ log productivities, this quantile
approach is fully consistent with our theoretical framework.

Our main finding is that productivity differences across urban areas in France are mostly
explained by agglomeration. The distribution of firms’ log productivities in large French cities
is remarkably well described by taking the distribution of firms’ productivities in small French
cities, dilating it, and shifting it to the right. This holds for the productivity distributions of firms
across all sectors as well as most two-digit sectors when considered individually. It also holds
when comparing cities with population above and below 200,000, more finely subgroups of cities,

23The approach developed in Del Gatto et al. (2006) and Del Gatto et al. (2008) also differs significantly from ours. They
make distributional assumptions about productivity and assess whether more open sectors exhibit a smaller dispersion
of productivity.
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and even individual cities. This finding is also robust to the choice of zoning since taking French
employment areas instead of French urban yields similar results. Our bottom line is that, relative to
the rest of the country, the distribution of firms log productivities in cities with population above
200,000 is shifted to the right by of 0.09 and dilated by a factor of 1.22. Firms in large cities are
thus on average about 9 percent more productive than in small cities. Because of dilation, this
productivity advantage is only of 5 percent for firms at the bottom quartile and 14 percent for
firms at the top quartile. On the other hand we find no difference between small and large cities in
terms of left truncation of the log productivity distribution.

These findings are interesting and raise a number of questions regarding future research. Most
models of agglomeration economies can easily replicate a shift but far fewer imply a dilation (Dur-
anton and Puga, 2004). In our model, dilation arises from a simple technological complementarity
between the productivity of firms and that of workers. Such complementarity could arguably be
generated from more subtle interactions between firms and workers (assuming for instance some
heterogeneity among workers as well). Furthermore this type of complementarity might also have
some interesting implications with respect to location choices for both firms and workers as well
as implications regarding the dynamics of firm productivity and workers’ career paths.

That there are no differences in market selection might seem surprising to some. The emphasis
however should be on the word difference. The fact that firms’ log productivity distributions all
exhibit a positive skew would be consistent with some selection if the underlying distribution of
productivity were symmetric (or negatively skewed). However such selection appears to take
place everywhere in France with the same intensity. As shown by our model, this is consist-
ent with the French market being highly integrated. Different findings could certainly emerge
when comparing different countries. Furthermore, our finding of no difference in selection across
places is consistent with the usual finding in the trade literature that trade liberalisation raises
productivity mostly through selection. Poorly integrated markets might show big differences in
the intensity of market selection whereas highly integrated markets might have very little. Any
transition between these two states involves changes in selection. For instance, when a country
liberalises its imports, many low productivity firms may be eliminated by stronger competition
from foreign competitors. However, as trade liberalisation proceeds further, the toughness of
competition and thus the strength of market selection will converge between the home and foreign
countries. This end result of no large spatial differences in the strength of selection is what we find
when comparing cities across France. At a very different spatial scale, we also suspect that for
many consumer services selection could be very potent at a very fine level of aggregation such as
the neighbourhood. A new hairdresser on a stretch of street is likely to affect other hairdressers
along that stretch more than a new machine-tool producer will affect other machine-tool producers
in the same city.

Appendix A. Proof of Lemma 1 and Lemma 1’

We now prove Lemma 1’. The proof of Lemma 1 is a particular case of this for Di = Dj = 1 and
hence D = 1. Consider first the case Si > Sj. We apply the change of variables φ → φ−A

D , which
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turns equation (53) into

Fj

(
φ− A

D

)
= max

0,
F̃
(

φ−Ai
Di

)
− Sj

1− Sj

 . (a1)

Dividing by 1− S and adding −S
1−S to all terms in this equation yields

Fj

(
φ−A

D

)
− S

1− S
= max

 −S
1− S

,
F̃
(

φ−Ai
Di

)
− Si

1− Si

 . (a2)

Since, with Si > Sj, S > 0, we have −S
1−S < 0, and we finally obtain

max

0,
Fj

(
φ−A

D

)
− S

1− S

 = max

0,
F̃
(

φ−Ai
Di

)
− Si

1− Si

 = Fi(φ) . (a3)

Consider now the case Si < Sj. We apply the change of variables φ → Dφ + A, which turns
equation (52) into

Fi(Dφ + A) = max

0,
F̃
(

φ−Aj
Dj

)
− Si

1− Si

 . (a4)

Dividing by 1− −S
1−S and adding S to all terms in this equation yields

Fi(Dφ + A)− −S
1−S

1− −S
1−S

= max

S,
F̃
(

φ−Aj
Dj

)
− Sj

1− Sj

 . (a5)

Since, with Si < Sj, S < 0, we finally obtain

max

{
0,

Fi(Dφ + A)− −S
1−S

1− −S
1−S

}
= max

0,
F̃
(

φ−Aj
Dj

)
− Sj

1− Sj

 = Fj(φ) . (a6)

Appendix B. Implementation

In this appendix, we explain how we compute the minimisation criterium of equation (42), used
to estimate the values of the parameters. We do so for our main results, including the dilation
parameter D introduced in Section 6. For our baseline results, the implementation is the same
with D = 1.

First note that the data consist of a set of log productivities in large cities (indexed by i) and in
small cities (indexed by j), ranked in ascending order and denoted Φi and Φj respectively. From
these data, for any θ, we need to be able to evaluate m̂θ(u) and ˆ̃mθ(u) at any ranks u ∈ [0,1] to
compute M(θ) =

∫ 1
0 [m̂θ(u)]2du +

∫ 1
0

[
ˆ̃mθ(u)

]2du. For that purpose, we construct some estimators
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λ̂i and λ̂j of the quantiles λi(u) and λi(u). Focusing on large cities (replace i with j for small cities),
we start from the set of log productivities

Φi = [φi(0), . . . , φi(Ei − 1)]′ , (a7)

where Ei is the number of establishments in i and φi(0) < . . . < φi(Ei − 1). We can construct the
sample quantiles at the observed ranks as λ̂i

(
k
Ei

)
= φi(k) for k ∈ {0, . . . , Ei − 1}. For any other

rank u ∈]0,1[, the estimators of the quantiles are recovered by linear interpolation:

λ̂i (u) = (k∗i + 1− uEi) λ̂i

(
k∗i
Ei

)
+ (uEi − k∗i ) λ̂i

(
k∗i + 1

Ei

)
, (a8)

where k∗i = buEic and b.c denotes the integer part. From equation (a8) and the corresponding
expression for j, we can use the empirical counterparts of equations (61) and (62),

m̂θ(u) = λ̂i (rS(u))− Dλ̂j (S + (1− S)rS(u))− A , (a9)

ˆ̃mθ(u) = λ̂j (r̃S(u))− 1
D

λ̂i

(
r̃S(u)− S

1− S

)
+

A
D

, (a10)

to compute m̂θ(u) and ˆ̃mθ(u) at any rank u and for any θ. We then consider K = 1001 ranks evenly
distributed over the interval [0,1]. These ranks are denoted uk, k ∈ {0, . . . , K}, with u0 = 0 and
uK = 1. We approximate the two subcriteria using the formulas:

∫ 1

0
[m̂θ(u)]2du ≈ 1

2

K

∑
k=1

{
[m̂θ(uk)]

2 + [m̂θ(uk−1)]
2
}

(uk − uk−1) , (a11)

∫ 1

0

[
ˆ̃mθ(u)

]2du ≈ 1
2

K

∑
k=1

{[
ˆ̃mθ(uk)

]2 +
[

ˆ̃mθ(uk−1)
]2
}

(uk − uk−1) . (a12)

The estimated parameters θ̂ are those which minimise the sum of these two quantities.

Appendix C. Implementation of alternative approaches to productivity

Olley-Pakes

In this appendix, we present three alternative approaches to tfp estimation. The first is the meth-
odology proposed by Olley and Pakes (1996) to account for the endogeneity of production factors
when estimating the parameters of equation (46). These authors consider that the residual φt can be
decomposed into an unobserved factor ϕt which is potentially correlated with labour and capital,
and an uncorrelated error term ηt such that: φt = ϕt + ηt. They suppose that the unobserved factor
ϕt can be rewritten as its projection on its lag and an innovation: ϕt = κ (ϕt−1) + ξt. They also
make the crucial assumption that capital investment at time t depends on the capital stock and the
unobserved factor ϕt: It = it (kt,ϕt). The function it is supposed to be strictly increasing in the
unobserved factor. It can be inverted such that: ϕt = ft (kt,It). Equation (46) can then be rewritten
as:

ln(Vt) = β2 ln(lt) + ∑3
s=1 σsls,t + Ψt (kt,It) + ηt , (a13)
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where the auxiliary function Ψt is defined as

Ψt (kt,It) = β0,t + β1 ln(kt) + ft (kt,It) . (a14)

Equation (a13) can be estimated with ols after Ψt (kt,It) has been replaced with a third-order
polynomial crossing kt, It and year dummies. This allows to recover some estimators of the labour
and skill share coefficients (β̂2 and σ̂s), as well as the auxiliary function (Ψ̂t). It is then possible to
construct the variable

vt = ln(Vt)− β̂2 ln(lt)− ∑3
s=1 σ̂sls,t . (a15)

From equation (a14), the lagged value of the unobserved factor ϕt−1 can be approximated by
Ψ̂t−1 (kt−1,It−1) − β0,t−1 − β1 ln(kt−1). Using equations (a13), (a14), (a15), and the projection of
the unobserved factor on its lag, the value-added equation then becomes:

vt = β0,t + β1 ln(kt) + κ
(
Ψ̂t−1 (kt−1,It−1)− β0,t−1 − β1 ln(kt−1)

)
+ ϑt , (a16)

where ϑt is a random error. The function κ(.) is approximated by a third-order polynomial and
equation (a16) is estimated with non-linear least squares. We thus recover some estimators of the
year dummies (β̂0,t) and the capital coefficients (β̂1). An estimator of φt is then given by φ̂t =
vt − β̂0,t − β̂1 ln(kt).

Although the Olley-Pakes method allows us to control for simultaneity, it has some drawbacks.
In particular, we need to construct investment from the data: It = kt− kt−1. Since investment enters
lagged into equation (a16), we must observe firms for at least three consecutive years to compute
their tfp with this method. Other observations must be dropped. Furthermore, the investment
equation It = it(kt,ϕt) can be inverted only if It > 0. Hence, we can keep only observations
for which It > 0. This double selection may introduce a bias, for instance, if (i) there is greater
‘churning’ (i.e. entry and exits) in denser areas, and (ii) age and investment affect productivity
positively. Then, more establishments with a low productivity may be dropped in high density
areas. In turn, this may increase the measured difference in local productivity between areas of
low and high density. Re-estimating ols tfp on the same sample of firms used for Olley-Pakes
shows that this is, fortunately, not the case on French data.

Levinsohn-Petrin

We also implement the approach proposed by Levinsohn and Petrin (2003). Its main difference
with Olley and Pakes (1996) is that the quantity of inputs is used to account for the unobservables
instead of investment. The unobserved factor is then rewritten as ϕt = ft (kt,Ict) where Ict is the
consumption of inputs. Otherwise, the estimation procedure remains the same. However, we lose
fewer observations since the use of materials instead of investment means we need to observe
firms for two consecutive years instead of three.

Cost shares

Alternatively, a tfp measure can be constructed using cost shares as estimates of the labour and
capital coefficients in equation (46). The costs of labour and capital were evaluated by Boutin

39



and Quantin (2006) for each cell defined by the 3-digit industry, the year, and the number of firm
employees (less than 5, 5–20, 20–50, 100, more than 100). The share of capital (resp. labour) in
these costs is denoted β̂s

1,t (resp. β̂s
2,t). Implicitly, we assume that returns to scale equal one as

we have: β̂s
1,t + β̂s

2,t = 1. The predicted value-added based on capital and labour is ln Vp
t =

β̂s
1,t ln(kt) + β̂s

2,t ln(lt). The following specification can then be estimated with ols:

ln(Vt)− lnVp
t = β0,t + ∑3

s=1 σsls,t + φ̃t (a17)

Denoting β̂s
0,t and σ̂s

s the estimated coefficients, the tfp measure is given by:

ˆ̃φt = ln(Vt)− lnVp
t − β̂s

0,t − ∑3
s=1 σ̂s

s ls,t (a18)

For all methods, the tfp of a firm is the firm-level average of yearly tfp over the period
1994–2002. The tfp estimates we recover with these four approaches are highly correlated. The
correlation between ols tfp and Olley-Pakes tfp is 0.73. The correlation between ols tfp and
Levinsohn-Petrin tfp is 0.85. The correlation ols tfp and cost-shares tfp is 0.93. Unsurprisingly,
these alternative methods to estimate tfp give results which are qualitatively similar for A, D, and
S at the sector level. These results are available upon request.
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Appendix D. Estimations for employment areas

Table 5: Employment areas above vs. below median density

ols, mono-establishments

Sector A D S R2 obs.

(1) (2) (3) (4) (5)

Food, beverages, tobacco 0.07 0.94 0.01 0.97 22,049
(0.00) ∗ (0.02) ∗ (0.00) ∗

Apparel, leather 0.04 1.35 0.01 0.99 5,804
(0.01) ∗ (0.05) ∗ (0.01)

Publishing, printing, recorded media 0.17 1.23 0.00 0.98 9,236
(0.01) ∗ (0.05) ∗ (0.00)

Pharmaceuticals, perfumes, soap 0.06 1.15 -0.01 0.86 1,069
(0.06) (0.13) (0.06)

Domestic appliances, furniture 0.13 1.20 0.01 0.98 6,362
(0.01) ∗ (0.04) ∗ (0.01) ∗

Motor vehicles 0.09 1.19 0.01 0.85 1,442
(0.02) ∗ (0.13) ∗ (0.02)

Ships, aircraft, railroad equipment 0.09 1.10 0.00 0.85 1,016
(0.03) ∗ (0.17) (0.02)

Machinery 0.09 1.06 0.00 0.98 14,738
(0.01) ∗ (0.02) ∗ (0.00)

Electric and electronic equipment 0.08 0.98 0.00 0.96 5,749
(0.01) ∗ (0.04) (0.00)

Building materials, glass products 0.07 1.10 0.00 0.94 3,196
(0.01) ∗ (0.05) (0.01)

Textiles 0.06 1.11 0.01 0.94 3,363
(0.01) ∗ (0.07) ∗ (0.01)

Wood, paper 0.09 1.13 0.00 0.98 5,872
(0.01) ∗ (0.05) ∗ (0.01)

Chemicals, rubber, plastics 0.08 1.11 0.01 0.96 5,335
(0.01) ∗ (0.04) ∗ (0.01)

Basic metals, metal products 0.07 1.06 0.00 1.00 14,305
(0.01) ∗ (0.02) ∗ (0.00)

Electric and electronic components 0.08 0.99 -0.01 0.94 2,579
(0.01) ∗ (0.06) (0.01)

Consultancy, advertising, business services 0.19 1.06 -0.01 0.96 37,041
(0.02) ∗ (0.03) (0.03) ∗

All sectors 0.09 1.21 0.00 1.00 139,143
(0.00) ∗ (0.01) ∗ (0.00)

41



References

Bernard, Andrew B., Jonathan Eaton, J. Bradford Jensen, and Samuel Kortum. 2003. Plants and
productivity in international trade. American Economic Review 93(4):1268–1290.

Bernard, Andrew B. and J. Bradford Jensen. 1999. Exceptional exporter performance: Cause, effect,
or both? Journal of International Economics 47(1):1–25.

Berry, Steven and Joel Waldfogel. 2006. Product quality and market size. Processed, Yale Univer-
sity.

Boutin, Xavier and Simon Quantin. 2006. Une méthodologie d’évaluation comptable du coût du
capital des entreprises françaises: 1984–2002. Working Paper G2006–09, insee-dese.

Burnod, Guillaume and Alain Chenu. 2001. Employés qualifiés et non-qualifiés: Une proposi-
tion d’aménagement de la nomenclature des catégories socioprofessionnelles. Travail et Emploi
0(86):87–105.

Carrasco, Marine and Jean-Pierre Florens. 2000. Generalization of gmm to a continuum of moment
conditions. Econometric Theory 16(6):797–834.

Ciccone, Antonio and Robert E. Hall. 1996. Productivity and the density of economic activity.
American Economic Review 86(1):54–70.

Clerides, Sofronis, Saul Lach, and James R. Tybout. 1998. Is learning by exporting important?
Micro-dynamic evidence from Colombia, Mexico, and Morocco. Quarterly Journal of Economics
113(3):903–947.

Collard-Wexler, Allan. 2007. Productivity dispersion and plant selection in the ready-mix concrete
industry. Processed, New York University.

Combes, Pierre-Philippe, Gilles Duranton, and Laurent Gobillon. 2008. Spatial wage disparities:
Sorting matters! Journal of Urban Economics 63(2):723–742.

Combes, Pierre-Philippe, Gilles Duranton, Laurent Gobillon, and Sébastien Roux. 2009. Estimating
agglomeration effects with history, geology, and worker fixed-effects. In Edward L. Glaeser
(ed.) The Economics of Agglomeration. Cambridge, ma: National Bureau of Economic Research,
forthcoming.

De Loecker, Jan. 2007. Product differentiation, multi-product firms and estimating the impact of
trade liberalization on productivity. Processed, Princeton University.

Del Gatto, Massimo, Giordano Mion, and Gianmarco I.P. Ottaviano. 2006. Trade integration,
firm selection and thecosts of non-Europe. Discussion Paper 5730, Centre for Economic Policy
Research.

Del Gatto, Massimo, Gianmarco I.P. Ottaviano, and Marcello Pagnini. 2008. Openness to trade
and industry cost dispersion: Evidence from a panel of Italian firms. Journal of Regional Science
48(1):97–129.

Dixit, Avinash K. 1979. A model of duopoly suggesting a theory of entry barriers. Bell Journal of
Economics 10(1):20–32.

Duranton, Gilles and Diego Puga. 2004. Micro-foundations of urban agglomeration economies. In
Vernon Henderson and Jacques-François Thisse (eds.) Handbook of Regional and Urban Economics,
volume 4. Amsterdam: North-Holland, 2063–2117.

42



Foster, Lucia, John Haltiwanger, and Chad Syverson. 2008. Reallocation, firm turnover, and
efficiency: Selection on productivity or profitability? American Economic Review 98(1):394–425.

Fujita, Masahisa and Hideaki Ogawa. 1982. Multiple equilibria and structural transition of non-
monocentric urban configurations. Regional Science and Urban Economics 12(2):161–196.

Glaeser, Edward L. and David C. Maré. 2001. Cities and skills. Journal of Labor Economics 19(2):316–
342.

Gobillon, Laurent and Sébastien Roux. 2008. Quantile-based inference of parametric transforma-
tions between two distributions. Processed, crest-insee.

Head, Keith and Thierry Mayer. 2004. The empirics of agglomeration and trade. In Vernon Hende-
rson and Jacques-François Thisse (eds.) Handbook of Regional and Urban Economics, volume 4.
Amsterdam: North-Holland, 2609–2669.

Heckman, James J. and Bo E. Honore. 1990. The empirical content of the Roy model. Econometrica
58(5):1121–1149.

Hellerstein, Judith K., David Neumark, and Kenneth R. Troske. 1999. Wages, productivity, and
worker characteristics: Evidence from plant-level production functions and wage equations.
Journal of Labour Economics 17(3):409–446.

Henderson, J. Vernon. 1974. The sizes and types of cities. American Economic Review 64(4):640–656.

Hopenhayn, Hugo. 1992. Entry, exit, and firm dynamics in long run equilibrium. Econometrica
60(5):1127–1150.

Levinsohn, James and Amil Petrin. 2003. Estimating production functions using inputs to control
for unobservables. Review of Economic Studies 70(2):317–342.

Lileeva, Alla and Daniel Trefler. 2007. Improved market access to foreign markets raises plant-level
productivity... for some plants. Working Paper 13297, National Bureau of Economic Research.

Lucas, Robert E., Jr. and Esteban Rossi-Hansberg. 2002. On the internal structure of cities. Econo-
metrica 70(4):1445–1476.

Marshall, Alfred. 1890. Principles of Economics. London: Macmillan.

Melitz, Marc and Gianmarco I. P. Ottaviano. 2008. Market size, trade and productivity. Review of
Economic Studies 75(1):295–316.

Melitz, Marc J. 2003. The impact of trade on intra-industry reallocations and aggregate industry
productivity. Econometrica 71(6):1695–1725.

Melo, Patricia C., Daniel J. Graham, and Robert B. Noland. 2009. A meta-analysis of estimates of
urban agglomeration economies. Regional Science and Urban Economics 39:forthcoming.

Nocke, Volker. 2006. A gap for me: Entrepreneurs and entry. Journal of the European Economic
Association 4(5):929–956.

Olley, G. Steven and Ariel Pakes. 1996. The dynamics of productivity in the telecommunication
equipment industry. Econometrica 64(6):1263–1297.

Ottaviano, Gianmarco I. P., Takatoshi Tabuchi, and Jacques-Franccois Thisse. 2002. Agglomeration
and trade revisited. International Economic Review 43(2):409–436.

43



Pavcnik, Nina. 2002. Trade liberalization, exit, and productivity improvements: Evidence from
Chilean plants. Review of Economic Studies 69(1):245–276.

Rosenthal, Stuart S. and William Strange. 2004. Evidence on the nature and sources of agglomer-
ation economies. In Vernon Henderson and Jacques-François Thisse (eds.) Handbook of Regional
and Urban Economics, volume 4. Amsterdam: North-Holland, 2119–2171.

Smith, Adam. 1776. An Inquiry into the Nature and Causes of the Wealth of Nations. London: Printed
for W. Strahan, and T. Cadell.

Sveikauskas, Leo. 1975. Productivity of cities. Quarterly Journal of Economics 89(3):393–413.

Syverson, Chad. 2004. Market structure and productivity: A concrete example. Journal of Political
Economy 112(6):1181–1222.

Vives, Xavier. 1990. Trade association disclosure rules, incentives to share information, and welfare.
Rand Journal of Economics 21(3):409–430.

Wheaton, William C. and Mark J. Lewis. 2002. Urban wages and labor market agglomeration.
Journal of Urban Economics 51(3):542–562.

44


	The productivity advantages of large cities: Distinguishing agglomeration from firm selection
	1 Introduction
	2 A nested model of selection and agglomeration
	Figure 1

	3 Econometric approach
	4 Data and tfp estimations
	5 Baseline results
	Table 1
	Figure 2
	Figure 3

	6 When more productive establishments benefit more from agglomeration
	Figure 4

	7 Main empirical results
	Table 2
	Table 3
	Table 4

	8 Discussion
	9 Concluding comments
	Appendix A Proof of Lemma 1 and Lemma 1'
	Appendix B Implementation
	Appendix C Implementation of alternative approaches to productivity
	Appendix D Estimations for employment areas
	Table 5

	References


