Estimation des externalités d'agglomération à l'aide de variables historiques et géologiques.

P.-P. Combes, G. Duranton, L. Gobillon, S. Roux

GREQAM, University of Toronto, INED, CREST

Journées de Méthodologie Statistique

Objectif

Littérature importante sur l'estimation des effets d'agglomération, cf. Rosenthal et Strange, 2004 : le doublement de la densité des emplois augmente de 4 à 8% la productivité locale.

Certaines questions ne sont pas tranchées :

- Simultanéité et endogénéité
- Spécification : échelle spatiale?
- Quelle variable dépendante à examiner?

Deux biais potentiels importants

- endogénéité de la quantité de travail
 - Mécanisme : La densité urbaine serait la conséquence, et non la cause de la productivité plus élevée (biais d'hétérogénéité inobservée)
 - Solution : Utilisation d'instruments géologiques et historiques
- endogénéité de la qualité de travail
 - Mécanisme : Les plus grandes cités pourraient attirer les travailleurs qualifiés, l'effet de qualification étant non séparable de l'effet d'agglomération.
 - Solution : Utilisation d'effets fixes mesurant la "vraie" productivité des individus (estimés à partir d'équations de salaires)

Modèle

Structure économique

On considère la fonction de production

$$y_i = A_i k_i^{\alpha} I_i^{1-\alpha}$$

La maximisation du profit ammène ⇒

$$w_i = (1-\alpha) \left(\frac{\alpha}{r}\right)^{\alpha/(1-\alpha)} A_i^{1/(1-\alpha)}$$

Salaires:

$$\ln w_i = \mathsf{Constant} + \frac{1}{1-\alpha} \log A_i$$

Effets d'agglomération :

$$\log A_i = X_{a(i)}\varphi + \mu_i$$

⇒ Salaires :

$$\log w_i = \text{Constant} + X_{a(i)} \frac{\varphi}{1 - \alpha} + \mu'_i$$

⇒ PGF ·

$$\ln y_i = \alpha \ln k_i + (1 - \alpha) \ln l_i + X_{a(i)}\varphi + \mu_i$$

Equations à estimer

- Idée : estimer des effets au niveau de la zone, Wa ou TFPa.
- Les spécifications à estimer sont alors :

$$ln W_a = Constant + X_a \varphi^W + \mu_a^W \tag{1}$$

et

$$ln TFP_a = Constant + X_a \varphi^{TFP} + \mu_a^{TFP} \tag{2}$$

- Densité (Dens) est une variable explicative potentiellement endogène : il faut l'instrumenter!!
- Z est un bon instrument si
 - ① Cov (Dens, Z) \neq 0, vérifiable
 - 2 Cov $(\mu_a^X, Z) = 0$, vérifiable si suffisamment d'instruments

Modèle

Questions relatives à l'estimation

- Echelle spatiale (Zones d'emploi françaises et potentiel de marché)
- Quelles caractéristiques locales de contrôle? Urbanisation vs. effets de localisation
- Quantité de travail endogène (iv)
- Qualité de travail endogène / auto-sélection (effets fixes)
- Utilisation des salaires ou de la PGF :
 - PGF concept le plus direct de la productivité, mais au niveau de l'entreprise.
 - + Problème d'endogénéité des inputs
 - Le salaire est une mesure indirecte de la productivité individuelle : permet de contrôler l'hétérogénéité fixe inobservée

3 concepts de salaire

Moyenne simple :

$$W_{at}^{1} \equiv \ln \overline{w}_{at} \equiv \ln \left(\frac{1}{N_{at}} \sum_{j \in (a,t)} w_{jt} \right)$$
 (3)

Contrôle de l'hétérogénéité observable

$$\ln \overline{w}_{ast} = W_{at}^2 + \gamma_s + X_{ast}\varphi + \epsilon_{ast} \tag{4}$$

Contrôle de l'hétérogénéité inobservable

$$\ln w_{it} = W_{a(it)t}^3 + \gamma_{s(it)} + X_{a(it)s(it)t}^1 \varphi_{s(it)}^1 + X_{it}^2 \varphi^2 + \theta_i + \epsilon_{it}$$
 (5)

Concepts de PGF

Equation de production

$$\ln va_{it} = \alpha \ln k_{it} + \beta \ln l_{it} + \sum_{m} \beta_{m}^{S} q_{imt} + \phi_{t} + \varepsilon_{it}$$
 (6)

où k_{it} est le capital, l_{it} le nombre d'heures, q_{imt} la part du travail de qualification m, estimée par Olley-Pakes, d'où r_{it} , estimateur de ε_{it}

- Remarque : pas de contrôle de l'hétérogénéité individuelle
- On définit $r_{ast} \equiv \frac{1}{L_{ast}} \sum_{i \in (a,s,t)} l_{it} r_{it}$ où a est la zone, s le secteur.

$$\mathsf{tfp}_{at}^1 \equiv \frac{1}{n_{at}} \sum_{s \in (a,t)} n_{ast} r_{ast},$$

où n_{at} est le nombre d'établissements dans la zone a à la date t.

On décompose $r_{ast} = \gamma_s + \iota_{ast}$. On définit alors :

$$\mathsf{tfp}_{\mathsf{at}}^2 \equiv \frac{1}{n_{\mathsf{at}}} \sum_{s \in (\mathsf{a},\mathsf{t})} n_{\mathsf{ast}} \widehat{\iota}_{\mathsf{ast}}.$$

tfp²_{st} indice de productivité net des secteurs

• On peut rajouter des variables explicatives X_{ast} . On a alors

$$r_{ast} = tfp_{at}^3 + \gamma_s + X_{ast}\varphi + \epsilon_{ast}$$

Construit de la même manière que W_{at}^2

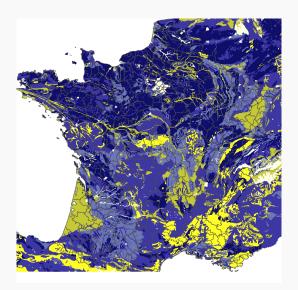
Données

- Pour les salaires : dads, 1976-1994
- Pour la PGF :
 - Données d'entreprises brn et rsi, 1994-2002
 - Localisation de l'établissement : siren, 1994-2002
 - Plus dads, 1994-2002
- Aggrégées pour créer les mesures par zone de productivité
- Autres contrôles introduits
- Utilisation d'instruments

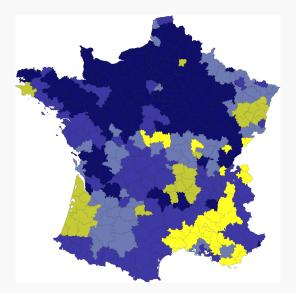
Endogénéité de la quantité de travail

- IV1 : Variables endogènes retardées (Ciccone et Hall, AER 1996, Combes et al 2006)
- IV2 : Géologie (Rosenthal et Strange 2006)
- IV3: Autres localisation relative (Ciccone et Hall, AER 1996)

L'utilisation d'instruments très différents renforce la crédibilité des tests de suridentification et permet la comparaison des coefficients


Variables historiques : instruments?

- Pertinence :
 - Les variables de population passée sont de bons prédicteurs de la population actuelle (Eaton Eckstein, RSUE, 1997)
- Exogénéité :
 - Le niveau de population passée et ses déterminants n'ont pas de raison de causer directement la productivité actuelle
 - Des variables très retardées sont indiquées


Variables géologiques : instruments

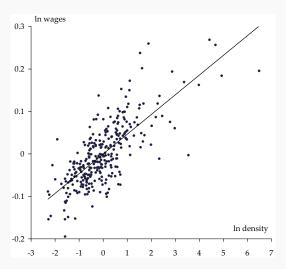
- Pertinence :
 - La nature des sols est un déterminant de long terme de l'installation des population et potentiellement de leur comportement démographique
- Exogénéité :
 - L'agriculture n'est plus une contrainte sur la localisation des populations (et n'est pas utilisé dans les données)

Exemple — capacité hydraulique souterraine

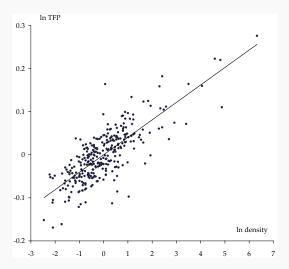
Exemple — capacité hydraulique souterraine

Tab.: Estimation de première étape : Densité de l'emploi

Variable	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
In(1831 density)	0.906 (0.046) ^a								
In(1881 density)	, ,	(0.924)							
Ruggedness		()	- 0.710 (0.224) ^a						
Subsoil mineralogy	N	N	` N ′	Υ	N	N	N	N	N
Dominant parent material (6 categories)	N	N	N	N	Υ	N	N	N	N
Subsoil water capacity	N	N	N	N	N	Υ	N	N	N
Soil carbon content	N	N	N	N	N	N	Υ	N	N
Depth to rock	N	N	N	N	N	N	N	Υ	N
Soil differentiation	N	N	N	N	N	N	N	N	Υ
R-squared	0.58	0.78	0.07	0.07	0.17	0.06	0.10	0.15	0.11
F -test (H_0 — All instruments zero)	395.7	1018.8	10.0	5.5	9.1	1.7	6.5	12.6	12.3
Partial R-squared	0.57	0.77	0.03	0.04	0.13	0.02	0.06	0.11	0.08


Dependent variable : In(employment density). 306 observations for each regression. All regressions include a constant and three amenity variables (sea, lake, and mountain). Standard errors in parentheses. a,b,c: corresponding coefficient significant at 1,5, 10%.

Tab.: Estimation de première étape : Potentiel de marché


Variable	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
In(1831 market pot.)	1.026 (0.012) ^a								
In(1881 market pot.)	()	0.970 (0.007) ^a							
Ruggedness		()	- 0.339 (0.111) ^a						
Subsoil mineralogy	N	N	`N′	Υ	N	N	N	N	N
Dominant parent material (6 cat.)	N	N	N	N	Υ	N	N	N	N
Subsoil water capacity ` ´	N	N	N	N	N	Υ	N	N	N
Soil carbon content	N	N	N	N	N	N	Υ	N	N
Depth to rock	N	N	N	N	N	N	N	Υ	N
Soil differentiation	N	N	N	N	N	N	N	N	Υ
R-squared	0.97	0.99	0.23	0.24	0.43	0.41	0.28	0.44	0.31
F -test (H_0 — All instruments zero)	7106.47	21503.0	9.4	7.3	23.1	26.3	11.3	41.2	24.0
Partial R-squared	0.96	0.99	0.03	0.05	0.28	0.26	0.10	0.29	0.14

Dependent variable : In(market potential). 306 observations for each regression. All regressions include a constant and three amenity variables (sea, lake, and mountain). Standard errors in parentheses. a,b,c: corresponding coefficient significant at 1, 5, 10%.

Corrélations observées : salaires et densité de l'emploi

Corrélations observées : PGF et densité de l'emploi

Résultats Salaires instrumentés

Tab.: Local wages as a function of density: historical and geological instruments

Variable	[1] W ¹	[2] W ²	[3] W ³	[4] W ³	[5] W ³	[6] W ³	[7] W ³	[8] W. ³
	tsls	tsls	tsls	gmm	tsls	tsls	tsls	tsls
In(dens.)	$(0.040)^a$	$(0.042)^a$	$(0.027)^a$	$(0.027)^a$	$(0.027$ $(0.002)^a$	$(0.027)^a$	$(0.027)^a$	$(0.027)^a$
Instruments :								
In(1831 dens.)	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Subsoil min.	Υ	Υ	Υ	Υ	N	Υ	N	N
Ruggedness	N	N	N	N	Υ	Υ	Υ	N
Hydro	N	N	N	N	N	N	Υ	N
Topsoil water cap.	N	N	N	N	N	N	N	Υ
1st stage stat. Over-id <i>p</i> -value	138.7 0.98	138.7 0.83	138.7 0.15	116.2 0.13	208.7 0.31	108.1 0.21	69.8 0.53	76.2 0.02

306 observations for each regression. All regressions include a constant and three amenity variables (sea, lake, and mountain).

Standard errors in parentheses. a, b, c : corresponding coefficient significant at 1, 5, 10%.

Résultats avec potentiel de marché

Tab.: Local wages as a function of density and (endogenous) market potential : historical and geological instruments

Variable	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
	W ¹	W ²	W ³	W ³	W ³	W ³	W ³	W ³
	tsls	tsls	tsls	tsls	tsls	tsls	tsls	tsls
In(density) In(market pot.)	0.033	0.040	0.020	0.018	0.019	0.020	0.020	0.020
	(0.003) ^a	(0.003) ^a	(0.002) ^a	(0.002) ^a	(0.002) ^a	(0.002) ^a	(0.002) ^a	(0.003) ^a
	0.034	0.020	0.034	0.048	0.039	0.036	0.036	0.033
	(0.006) ^a	(0.005) ^a	(0.003) ^a	(0.007) ^a	(0.005) ^a	(0.005) ^a	(0.006) ^a	(0.010) ^a
Instruments used: In(1831 density) In(1831 density) In(1831 m. pot.) Erodibility Soil carbon content Subsoil water capacity Depth to rock Ruggedness Soil differentiation	Y Y Y Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Y Y Y Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Y Y Y Z Z Z Z Z Z Z Z	Y	Y	Y N N N N N N N N N N N N N N N N N N N	Y	Y N N N N N N
First stage statistics	298.0	298.0	298.0	8.3	17.0	23.0	19.8	8.3
Over-id test <i>p</i> -value	0.57	0.36	0.67	0.62	0.19	0.36	0.54	0.11

306 observations for each regression.

All regressions include a constant and three amenity variables (sea, lake, and mountain). Standard errors in parentheses. a, b, c: corresponding coefficient significant at 1, 5, 10%.

Résultats PGF

Tab.: Local tfp (Olley-Pakes) as a function of density and (endogenous) market potential: historical and geological instruments

Variable	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
	tfp ¹	tfp ²	tfp ³	tfp ³	tfp ³	tfp ³	tfp ³	tfp ³
	tsls	tsls	tsls	tsls	tsls	tsls	tsls	tsls
In(density) In(market pot.)	0.028	0.030	0.035	0.034	0.034	0.034	0.034	0.034
	(0.003) ^a	(0.002) ^a	(0.002) ^a	(0.003) ^a	(0.003) ^a	(0.003) ^a	(0.003) ^a	(0.004) ^a
	0.025	0.027	0.026	0.021	0.023	0.021	0.022	0.024
	$(0.005)^a$	$(0.004)^a$	$(0.004)^a$	$(0.009)^b$	$(0.007)^a$	$(0.006)^a$	$(0.008)^a$	$(0.013)^{c}$
Instruments used : In(1831 density) In(1881 density) In(1883 m. pot.) Erodibility Soil carbon content Subsoil water capacity Depth to rock Ruggedness Soil differentiation	Y Y N N N N N N	Y Y Y N N N N N N N N N N N N N N N N N	Y Y Y N N N N N N N N N N N N N N N N N	Y N N Y Y N N N	Y	Y N N N N N N Y Y N N N N N N N N N N N	Y N N N N N N N N N N N N N N N N N N N	Y N N N N N N N N N N N N N N N N N N N
First stage statistics	230.6	230.6	230.6	8.2	16.4	22.8	20.2	8.0
Over-id test <i>p</i> -value	0.16	0.43	0.17	0.68	0.90	0.60	0.29	0.04

306 observations for each regression.

All regressions include a constant and three amenity variables (sea, lake, and mountain). Standard errors in parentheses, a, b, c; corresponding coefficient significant at 1, 5, 10%.

Conclusion

- Quantité endogène de travail :
 - Les variables endogènes retardées sur longues période (historiques) sont des instruments valides
 - Les variables géologiques sont plus compliquées à manipuler
 - Les deux types de variables conduisent à la même conclusion : le biais d'endogénéité de la quantité de travail est relativement faible
- Qualité endogène de travail :
 - Les meilleurs salariés vont dans les meilleures zones
 - En contrôlant de l'hétérogénéité fixe des individus, l'élasticité des salaires à la densité de l'emploi est divisée par 2. On ne peut appliquer cette approche à la PGF.
- Ces résultats sont propres à la France. Ils peuvent différer pour des pays où la mobilité des individus est plus forte (Etats-Unis).