

Tirages coordonnés et permutations

Paul-André Salamin Office fédéral de la statistique, Service de méthodes statistiques

JMS2005 Paris

1 Le problème du sondage coordonné

Le but du sondage coordonné est de gérer le recouvrement de plusieurs échantillons tirés successivement dans une population ${\cal U}$

Suite d'échantillons $(S_t, t \in T)$

Plans marginaux $P(S_t)$, probabilités d'inclusion marginales π_{kt} , $\pi_{kl,t}$

Coordination : probabilités jointes d'inclusion $\pi_{k,ut}$, $u \leq t$

Probabilités jointes d'inclusion

$$\pi_{k,12} = P(\{(S_1, S_2); S_1 \ni k, S_2 \ni k\})$$

Tirages indépendants : $\pi_{k,12} = \pi_{k1}\pi_{k2}$

Taille du recouvrement

$$E\left|S_1 \cap S_2\right| = \sum_{k \in U} \pi_{k,12}$$

Bornes pour $\pi_{k,12}$

$$\underbrace{\max\left(0,\pi_{k1}+\pi_{k2}-1\right)}_{\text{coordination négative optimale}} \leq \pi_{k,12} \leq \underbrace{\min\left(\pi_{k1},\pi_{k2}\right)}_{\text{coordination positive optimale}}$$

Tirage de S_t qui

- respecte le plan pour S_t : $P(S_t)$
- \bullet optimise les recouvrements avec les échantillons précédants : $\pi_{k,ut}$, $u \leq t$

Algorithme pour le sondage coordonné

- validité de l'algorithme
- qualité de l'algorithme

Autres aspects

- populations en évolution
- rotation d'un panel
- contrôle du temps hors échantillons

2 Tirage aléatoire simple (TAS)

Algorithme TAS (|U| = N, |S| = n)

- 1. Générer des nombres aléatoires $\omega_k \overset{i.i.d}{\sim} Unif(\mathbf{0},\mathbf{1})$ pour $k \in U$
- 2. Ordonner les unités de la population par nombres aléatoires ω_k croissants
- 3. Sélectionner dans l'échantillon $S\subset U$ les n premières unités

Sélectionner des unités qui ont reçu de petits nombres aléatoires \Leftrightarrow Sélectionner des unités qui ont des rangs bas dans la suite $\omega = (\omega_k, k \in U)$

Les nombres aléatoires i.i.d. ω_k , $k \in U$, sont générés à partir d'une loi ayant une fonction de distribution continue \Rightarrow

Les rangs des unités $k \in U$ dans la suite ω sont de distribution uniforme sur \mathcal{S}_U $\mathcal{S}_U =$ groupe des permutations des éléments de la population U

Algorithme TAS

- 1. Choisir une permutation aléatoire $\sigma \in \mathcal{S}_U$ telle que $P(\sigma) = 1/N!$
- 2. Sélectionner l'échantillon $S = \sigma^{-1} \{1, \dots, n\}$.

$$N = 5, n = 3, \quad \sigma = {12345 \choose 52413} \Rightarrow S = \{2, 4, 5\}$$

Remplacer
$$S\subseteq U$$
 par $I=(I_k,k\in U)\in\{\mathbf{0},\mathbf{1}\}^U$ où $I_k=\mathbf{1}$ si $k\in S$ et $I_k=\mathbf{0}$ st $k\notin S$
$$S=\{\mathbf{2},\mathbf{4},\mathbf{5}\}\subset U=\{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5}\} \leftrightarrow I=(\mathbf{0}\mathbf{1}\mathbf{0}\mathbf{1}\mathbf{1})$$

Algorithme TAS

- 1. Choisir une permutation aléatoire $\sigma \in \mathcal{S}_U$ telle que $P(\sigma) = 1/N!$
- 2. Sélectionner l'échantillon $I=a\circ\sigma$ où $a=(\mathbf{1}_n,\mathbf{0}_{N-n})$

$$I = a \circ \sigma = {12345 \choose 11100} {12345 \choose 52413} = {12345 \choose 01011} \leftrightarrow S = \{2, 4, 5\}$$

Calcul des probabilités d'inclusion: $I = a \circ \sigma$, $a = (\mathbf{1}_n, \mathbf{0}_{N-n})$, $P(\sigma) = 1/N!$.

$$\pi_k = \sum_{\sigma \in \mathcal{S}_U} a(\sigma(k)) P(\sigma) = \frac{1}{N} \sum_{i \in U} a_i = \frac{n}{N}$$

$$\pi_{kl} = \sum_{\sigma \in \mathcal{S}_{U}} a\left(\sigma\left(k\right)\right) a\left(\sigma\left(l\right)\right) P\left(\sigma\right) = \frac{1}{N\left(N-1\right)} \sum_{i \neq j \in U} a_{i} a_{j} = \frac{n\left(n-1\right)}{N\left(N-1\right)}$$

3 Tirage aléatoire simple stratifié (TASST)

Population U de taille N. Stratification de $U=\bigcup_{h\in H}U_h$ en H strates U_h de tailles N_h .

$$\begin{array}{c|cccc} k & \zeta \\ \hline 1 & 1 \\ 2 & 2 \\ 3 & 2 \\ 4 & 1 \\ 5 & 1 \\ 6 & 2 \\ \end{array}$$

Stratification $\zeta:U\to H$.

Population de taille N=6 avec la stratification $\zeta=(122112)$

Deux strates $U_1 = \{1, 4, 5\}$ et $U_2 = \{2, 3, 6\}$ de tailles $N_1 = N_2 = 3$

Echantillons de tailles $n_1 = n_2 = 2$

Permutation aléatoire pour la sélection de l'échantillon $R(\omega) = \sigma = 354621$

Strate $U_1 = \{1, 4, 5\}$: range 362 \rightarrow échantillon $S_1 = \{1, 5\}$

Strate $U_2 = \{2, 3, 6\}$: range 541 \rightarrow échantillon $S_2 = \{3, 6\}$

k	ζ	σ	I
1	1	3	1
2	2	5	0
3	2	4	1
4	1	6	0
5	1	2	1
6	2	1	1

Algorithme TASST

- 1. Choisir une permutation aléatoire $\sigma \in \mathcal{S}_U$ telle que $P(\sigma) = 1/N!$
- 2. Sélectionner l'échantillon $I=a\circ R\left(\zeta,\sigma\right)$ où $a=\left(\left(\mathbf{1}_{n_h},\mathbf{0}_{N_h-n_h}\right),h\in H\right)$

 $R(\zeta, \sigma) = R_{\zeta}(\sigma) =$ range de la permutation σ par rapport à la stratification ζ

$$R_{\zeta}: \mathcal{S}_{U} \rightarrow R_{\zeta}(id)\mathcal{S}_{\zeta}$$

 $\sigma = \mu\alpha \mapsto R_{\zeta}(\alpha)$

 $S_{\zeta} = \{ \sigma \in S_U; \zeta \circ \sigma = \zeta \}$ le sous-groupe de S_U qui laisse la stratification ζ invariante.

 $R(\zeta, \sigma)$ = range de la permutation σ par rapport à la stratification ζ

k	ζ	σ	$R\left(oldsymbol{\zeta},\sigma ight)$	I
1	1	3	2	1
2	2	5	6	0
3	2	4	5	1
4	1	6	3	0
5	1	2	1	1
6	2	1	4	1

Exemple : $N_1 = N_2 = 3$, $n_1 = n_2 = 2$

$$I = a \circ R\left(\zeta, \sigma\right) = \binom{123456}{110110} \binom{123456}{265314} = \binom{123456}{101011} \leftrightarrow S_1 = \left\{1, 5\right\}, S_2 = \left\{3, 6\right\}$$

Par exemple dans S-Plus

I=a[inverse(order(zeta,sigma))]

Propriétés des rangs par rapport à une stratification

- $R(\zeta, \sigma)$ est la permutation qui ordonne σ par ζ et σ
- Pour toute permutation τ , $R(\zeta \circ \tau, \sigma \tau) = R(\zeta, \sigma) \tau$

ζ	1212	1212	1212	1212
	M_{ζ}	$M_{\zeta}\cdot$ 1432	$M_{\zeta}\cdot$ 3214	$M_{\zeta}\cdot$ 3412
$\overline{}$ 1324 \cdot \mathcal{S}_{ζ}	1324	1423	2314	2413
\mathcal{S}_{ζ}	1234	1432	3214	3412
1243 \cdot \mathcal{S}_{ζ}	1243	1342	4213	4312
2134 \cdot $\mathcal{S}_{\zeta}^{\circ}$	2134	2431	3124	3421
2143 \cdot \mathcal{S}_{ζ}	2143	2341	4123	4321
3142 \cdot \mathcal{S}_{ζ}	3142	3241	4132	4231
$R_{oldsymbol{\zeta}}\downarrow$	\downarrow	\downarrow	\downarrow	\downarrow
$132{4}\cdot\mathcal{S}_{\mathcal{C}}$	1324	1423	2314	2413

Justification de l'algorithme

Décomposition $\sigma = \mu \alpha$, où $\alpha \in \mathcal{S}_{\zeta}$

$$R(\zeta, \sigma) = R(\zeta, \mu\alpha) = R(\zeta \circ \alpha^{-1}, \mu) \alpha = R(\zeta, \mu) \alpha.$$

On peut choisir μ tel que $R(\zeta, \mu) = R(\zeta, id)$.

Alors
$$R(\zeta, \sigma) = R(\zeta, id) \alpha$$
 et

$$I = a \circ R(\zeta, \sigma) = (a \circ R(\zeta, id)) \circ \alpha = a_{\zeta} \circ \alpha.$$

4 Validité d'un algorithme de coordination négative

Coordination négative pour une suite de TASST

Algorithme de Cotton et Hesse (algorithme CH)

Cotton, F. and Hesse, C. (1992). Tirages coordonnés d'échantillons. Document de travail de la Direction des Statistiques Economiques E9206. Rapport technique, INSEE, Paris.

Coordination négative pour des TASST, algorithme CH

- 1. Générer $\omega_1 = (\omega_k, k \in U)$, $\omega_k \stackrel{i.i.d}{\sim} Unif(\mathbf{0}, \mathbf{1})$, $k \in U$
- 2. Sélection de l'échantillon S_t de taille n_t
 - (a) Ordonner les unités $k \in U$ par ω_t croissant au sein des strates
 - (b) Sélectionner dans S_t les n_{ht} premières unités de U_h , $h \in H$
- 3. Réattribution des ω_t qui respecte les rangs de ω_t dans S_{ht} et $U_{ht}\setminus S_{ht}$ et
 - (a) qui associe aux unités de S_{ht} les n_{ht} plus grands nombres aléatoires
 - (b) qui associe aux unités de $U_{ht}\setminus S_{ht}$ les $N_{ht}-n_{ht}$ plus petits nombres aléatoires

Coordination négative pour des TASST, algorithme CH

$$N_1 = 4$$
, $N_2 = 5$, $n_1 = 2$, $n_2 = 3$

k	ζ_1	σ_1	I_1	σ_2
1	1	2	1	6
2	1	8	0	4
3	2	1	1	5
4	2	9	0	3
5	2	5	1	9
6	2	7	0	1
7	2	3	1	7
8	1	4	1	8
9	1	6	0	2

Coordination négative pour des TASST, algorithme CH

- 1. Choisir une permutation aléatoire $\sigma_1 \in \mathcal{S}_U$ telle que $P(\sigma_1) = 1/N!$
- 2. Sélectionner l'échantillon $I_t = a_t \circ R\left(\zeta_t, \sigma_t\right)$ où $a_t = \left(\left(\mathbf{1}_{n_{th}}, \mathbf{0}_{N-n_{th}}\right), h \in H\right)$
- 3. Transformation $\sigma_{t+1} = \sigma_t R(\zeta_t, \sigma_t)^{-1} R(\zeta_t \wedge I_t, \sigma_t)$

Si $\sigma_t = \mu_t \alpha_t$, où $\alpha_t \in \mathcal{S}_{\zeta}$ et $R(\zeta_t, \mu_t) = R(\zeta_t, id)$, alors

$$\sigma_{t+1} = \mu_t \left(\prod_{h \in H} \kappa_h^{-n_h} \right) \alpha_t$$

où $\kappa_h = \left(i_1 i_2 \dots i_{N_h}\right) \in \mathcal{S}_\zeta$ est la permutation cyclique fondamentale sur la strate $U_h = \left\{i_1 < i_2 < \dots < i_{N_h}\right\}$ de la stratification ζ_t .

La transformation $\sigma_t \mapsto \sigma_{t+1}$ est bijective, l'algorithme CH effectue bien des TASST.

5 Comparaison de trois algorithmes

Coordination négative pour une suite de TAS, algorithme EDS De Ree, J. (1999). Co-ordination of business samples using measured response burden. Invited paper, 52nd Session of the ISI Helsinki, Book 2, 289-292.

- 1. Générer $\omega = (\omega_k, k \in U)$, $\omega_k \stackrel{i.i.d}{\sim} Unif(\mathbf{0}, \mathbf{1})$, $k \in U$
- 2. Sélection de l'échantillon S_t de taille n_t
 - (a) Ordonner les unités $k \in U$ par charge cumulée croissante et par nombre aléatoire ω croissant
 - (b) Sélectionner dans l'échantillon S_t les n_t premières unités
- 3. Actualiser la charge cumulée $b_t(k) = \begin{cases} b_{t-1}(k) + 1 & \text{si } k \in S_t \\ b_{t-1}(k) & \text{si } k \in U \setminus S_t \end{cases}$

Coordination négative pour une suite de TAS, algorithme CH

- 1. Générer $\omega_1 = (\omega_k, k \in U)$, $\omega_k \stackrel{i.i.d}{\sim} Unif(\mathbf{0}, \mathbf{1})$, $k \in U$
- 2. Sélection de l'échantillon S_t de taille n_t
 - (a) Ordonner les unités $k \in U$ par ω_t croissant
 - (b) Sélectionner dans l'échantillon S_t les n_t premières unités
- 3. Réattribution des ω_t qui respecte les rangs de ω_t dans S_t et $U \setminus S_t$ et
 - (a) qui associe aux unités de S_t les n_t plus grands nombres aléatoires
 - (b) qui associe aux unités de S_t^c les $N-n_t$ plus petits nombres aléatoires

Coordination négative pour une suite de TAS, algorithme RIV Rivière, P. (2001). Random permutations of random vectors as a way to co-ordinate samples. Technical report, University of Southampton, UK.

- 1. Générer $\omega_1 = (\omega_k, k \in U)$, $\omega_k \stackrel{i.i.d}{\sim} Unif(\mathbf{0}, \mathbf{1})$, $k \in U$
- 2. Sélection de l'échantillon S_t de taille n_t
 - (a) Ordonner les unités $k \in U$ par ω_t croissant
 - (b) Sélectionner dans l'échantillon S_t les n_t premières unités
- 3. Rénumérotation
 - (a) Actualiser la charge cumulée $b_t = b_{t-1} + c_t I_t$
 - (b) Rénumérotation de ω_t basé sur la charge cumulée $\omega_{t+1} = \xi [b_t] (\omega_t) = \omega_t \circ R(\omega_t)^{-1} R(b_t, \omega_t)$

Coordination négative pour une suite de TAS, Forme standard des algorithmes EDS, CH et RIV

- 1. Générer $\sigma_1 \in \mathcal{S}_U$, $P(\sigma_1) = 1/N!$
- 2. Sélection de l'échantillon $I_t = a_t \circ \sigma_t$ où $a_t = \left(\mathbf{1}_{n_t}, \mathbf{0}_{N-n_t}\right)$
- 3. Actualisation de la charge cumulée $b_t = b_{t-1} + c_t I_t$ ($c_t = 1$ pour EDS)

4. Rénumérotation
$$\sigma_{t+1} = \begin{cases} R\left(b_{t}, \sigma_{1}\right) & \text{EDS} \\ R\left(I_{t}, \sigma_{t}\right) & \text{CH} \\ R\left(b_{t}, \sigma_{t}\right) & \text{RIV} \end{cases}$$

EDS ⇔ CH

6 Coordination positive

 S_1 : TAS, S_2 : TASST

Tirages avec les mêmes nombres aléatoires.

Taille du recouvrement

$$E\left|S_1 \cap S_2\right| = \sum_{k \in U} \pi_{k,12}$$

Probabilités jointes d'inclusion

$$\pi_{k,12} = P(\{(S_1, S_2); S_1 \ni k, S_2 \ni k\}) = \sum_{S_1 \ni k, S_2 \ni k} P(S_1, S_2)$$

où
$$P(S_1, S_2) = P(S_2 \mid S_1) P(S_1)$$

Permutation aléatoire σ , $P(\sigma) = 1/N!$, stratification ζ , vecteurs d'allocation $a_1 = \left(\mathbf{1}_{n_1}, \mathbf{0}_{N-n_1}\right)$ et $a_2 = \left(\left(\mathbf{1}_{n_{2h}}, \mathbf{0}_{N_h-n_{2h}}\right), h \in H\right)$. $\pi_{k,12} = \sum_{\sigma \in \mathcal{S}_U} (a_1 \circ \sigma)(k) \left(a_2 \circ R\left(\zeta, \sigma\right)\right)(k) P\left(\sigma\right)$

"You see what I have done?" he asked the ceiling, ... "I have transformed the problem from an intractably difficult and possibly quite insoluble conundrum into a mere linguistic puzzle. Albeit," he muttered, after a long moment of silent pondering, "an intractably difficult and possibly insoluble one"

Douglas Adams "Dirk Gently's holistic detective agency"

$$\begin{split} \mathcal{S}_{\zeta} &= \{\alpha \in \mathcal{S}_{U}; \zeta \circ \alpha = \zeta\} \\ M_{\zeta} &= \{\mu \in \mathcal{S}_{U}; R\left(\zeta, \mu\right) = R\left(\zeta, id\right)\} \\ \text{Chaque permutation } \sigma \in \mathcal{S}_{U} \text{ a une décomposition unique } \sigma = \mu\alpha \\ \text{avec } \alpha \in \mathcal{S}_{\zeta} \text{ et } \mu \in M_{\zeta} \end{split}$$

$$R(\zeta, \sigma) = R(\zeta, \mu\alpha) = R(\zeta \circ \alpha^{-1}, \mu) \alpha = R(\zeta, \mu) \alpha = R(\zeta, id) \alpha.$$

alors

$$\pi_{k,12} = \frac{1}{N!} \sum_{\mu \in M_{\zeta}} \sum_{\alpha \in \mathcal{S}_{\zeta}} (a_1 \circ \mu) (\alpha(k)) (a_2 \circ R(\zeta, id)) (\alpha(k)).$$

Sommation sur \mathcal{S}_{ζ} : essentiellement comme pour le calcul des probabilités d'inclusion pour un TAS.

Pour $k \in U_h$,

$$\sum_{\alpha \in \mathcal{S}_{\zeta}} x (\alpha (k)) y (\alpha (k)) = (N_h - 1)! \prod_{i \neq h} N_i! \sum_{l \in U_h} x_l y_l$$

Pour $k \in U_h$,

$$\pi_{k,12} = \frac{1}{N_h} {N_1 \cdots N_H \choose N_1 \cdots N_H} \sum_{\mu \in M_\zeta} \sum_{l \in U_h} a_1(\mu(l)) \left(a_2 \circ R(\zeta, id)\right)(l).$$

Pour $k \in U_h$,

$$\pi_{k,12} = \frac{1}{N_h} E\left(\min\left(n_{1h}, n_{2h}\right)\right),$$

où $n_{1h} = |S_1 \cap U_h|$ est de loi hypergéométrique $\mathcal{H}(N, N_h, n_1)$ et $n_{2h} = |S_2 \cap U_h|$. Taille du recouvrement

$$E|S_1 \cap S_2| = \sum_{k \in U} \pi_{k,12} = \sum_h E(\min(n_{1h}, n_{2h})).$$

$$E\left(\min\left(n_{1h},n_{2h}\right)\right) = \frac{1}{\binom{N}{n_1}} \sum_{m} \binom{N_h}{m} \binom{N-N_h}{n_1-m} \min\left(m,n_{2h}\right)$$

où $\max(0, n_1 - (N - N_h)) \le m \le \min(N_h, n_1)$.

Bornes pour $\pi_{k,12}$

$$\underbrace{\max\left(\mathbf{0},\pi_{k1}+\pi_{k2}-\mathbf{1}\right)}_{\text{coordination négative optimale}} \leq \pi_{k,12} \leq \underbrace{\min\left(\pi_{k1},\pi_{k2}\right)}_{\text{coordination positive optimale}}$$

Coordination positive optimale

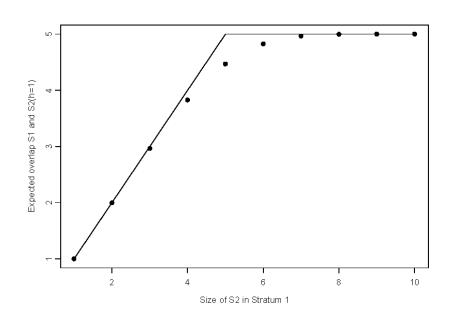
$$E_{opt}\left|S_{1}\cap S_{2}\right|=\sum_{h}\min\left(n_{1}\frac{N_{h}}{N},n_{2h}\right)=\sum_{h}\min\left(E\left(n_{1h}\right),n_{2h}\right)$$

Exemple

	h	N_h	$E(n_{1h})$	n_{2h}	$E\left(n_{1h}\right)\wedge n_{2h}$	$E\left(n_{1h}\wedge n_{2h}\right)$
	1	10	5	8	5	4.9956
	2	30	15	12	12	11.9956
•		40	20	20	17	16.9912

h	N_h	$E(n_{1h})$	n_{2h}	$E\left(n_{1h}\right)\wedge n_{2h}$	$E\left(n_{1h}\wedge n_{2h}\right)$
1	10	5	5	5	4.4683
2	30	15	15	15	14.4683
	40	20	20	20	18.9366





7 Conclusion

Techniques pour étudier les propriétés de certains algorithmes de coordination (nombres aléatoires permanents, TASST). Trois exemples. Beaucoup d'autres applications possibles :

- Autres algorithmes (OFS, Y. Tillé)
- Tirages de Bernoulli par strate
- Méthode des substitutions de Kish et Scott
- Probabilités jointes d'inclusion dans des cas plus complexes
- Populations en évolution
- Rotation de panels
- Temps hors échantillons