NON-PARAMETRIC APPROACH TO
THE COST-OF-LIVING INDEX
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INSEE, Division des prix 4 la consommation

Les débats récents sur une possible surestimation de l'inflation ont notamment porté
sur Uampleur du « biais de substitution » dans le calcul des indices de prix. Ce biais
résulte de 'insuffisante prise en compte, avec un indice de Laspeyres, des transferts
d'achats des consommateurs entre produits ou points de vente en fonction de
I'évolution différenciée des prix.

Le biais de substitution peut étre important au niveau « détaillé » des produits.
Idéalement, il conviendrait de calculer un « indice & wtilité constante » (IUC), qui
mesure la variation de la dépense assurant au moindre cofit le maintien du « niveau
de vie » face & la variation des prix. Calculer un 1UC est délicat : il est nécessaire
de mettre en évidence une fonction d'wtilité qui « rationalise » les donndes.
Formellement, ce probléme est résolu grdce a la théorie des « préférences
révélées ». En pratique, il faut disposer de relevés trés fins de prix et de quantités,
ce que permettent aujourd hui les données « scanner ».

Cette étude présente les résultats obtenus avec ce type de données . les choix des
consommateurs, pris dans leur ensemble, sont effectivement rationnels. Il v’y a pas
un, mais toute une « plage » d’IUC, dont les valeurs extrémes coincident de temps &
autre avec les indices de Laspeyres et de Paasche; cette plage contient presque
toujours l'indice de Fisher.
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1. Introduction

Consumer price indexes (CPIs) have recently been the focus of a polemic over a
possible overstatement of inflation. The debate began in the United States around the
Boskin Report (1996), then spread to Canada, the United Kingdom, and France. The
issue at stake is crucial, because CPIs are used to revalue social benefits, maintain
minimum-wage purchasing power, and adjust tax brackets (especially in the U.S.).
The Boskin Report singles out new products and quality changes as the main causes
of bias in the U.S., but other countries refuse to quantify either factor. Apart from
these causes, experts attribute the bias mainly to the failure to measure substitutions,
despite the use of chaining.! To be more precise, the substitution bias in the U.S. is
most pronounced at the detailed level, i.e., a highly disaggregated level of product
definition. Until recently (and sometimes still today), micro-indexes at that level
were calculated with the aid of arithmetic means of price ratios, i.e., of Laspeyres
indexes with equal weightings. The defect of this type of formula is that it
overweights the goods with the steepest-rising prices. This generates a substitution
bias that U.S. statisticians, as well as those of the European Union member States,
have corrected by replacing the arithmetic mean of the price ratios by a geometric
mean. The Boskin Report actually estimated the substitution bias at the detailed level
by comparing the indexes obtained through the successive use of the two formulas.
In fact, the adoption of the geometric formula and the resulting measure of the
substitution bias are debatable—and have been challenged by the U.S. Bureau of
Labor Statistics (BLS). The problem lies in the formula's assumption of a unit
elasticity of substitution between products. Moulton (1996) suggested using utility
functions with different elasticities of substitution for different products. The
proposal was backed in France by Lequiller (1998). The elasticities could be
estimated with the aid of scanner data supplied by marketing firms. Data scanned
from bar codes give very detailed information on prices and quantities of staple
consumer goods sold in mass-merchandise outlets.

Scanner data can be used not only to measure elasticities of substitution but also to
calculate cost-of-fiving indexes (COLs). COLs were quickly perceived to be effective
benchmarks, notably by the Boskin Commission—backed, on this point, by the BLS.
An initial difficulty is that the computation of COLs requires data on quantities sold
as well as on prices. Manser and McDonald (1988) used macro-data for which
quantity series are available only at annual frequencies for the period 1959-85 in the
U.S. Only micro-data offer quantity series at the same monthly frequency as prices in
the CPL. In this study, we report the results obtained on such data. The series were
supplied by the market research firm AC Nielsen, and concern three products sold in
supermarkets and hypermarkets throughout metropolitan France : edible oils,
detergents, and coffee. They cover the years 1994, 1995, and 1996,

'In the U.S., chaining is performed only once a decade.
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Attempts to calculate a COL run into a major difficulty : the need to identify a utility
function that rationalizes the data, i.e., a utility function such that, for each
observation, the quantities acquired by consumers are optimal relative to the
corresponding prices. Indeed, there is an even more fundamental question : does
such a function exist? The tools for answering the question are supplied by the
microeconomic theory of "revealed preferences," elaborated by Afriat {1967, 1977,
1981). Afriat defined the conditions in which a utility function that rationalizes the
price and quantity data can exist. The quantities—and hence the revealed utility
function—may apply to consumption by a single person or an entire population of
consumers. Varian (1982, 1983) also contributed to the description of such
conditions. Most important, he defined algorithms that allow the conditions to be
verified by computer. Diewert and Parkan (1985) then applied these methods to
macro-data.”

The problem of the existence of a data-rationalizing utility function having been
solved, the next step—the actual calculation of COLs with such utility functions—
was performed by Manser and McDonald (1988). They exploited the findings of
previous authors to determine the set of COLs relating to the different homothetic
data-rationalizing utility functions. These functions, when they exist, are not unique.
It is not just one index but an entire "range” of COLs that needs to be computed.
Both the bounds and the points inside the range are COLs. We felt it useful to offer a
proof of the second point, which Manser and McDonald regard as self-evident.”

The Laspeyres index widens the COL range, while the Paasche index narrows it.
Manser and McDonald were able to provide boundaries for the substitution bias in
the U.S. index (which is of the Laspeyres type) over the period 1959-85. Our study,
based on micro-data, finds that the substitution bias may diminish in some periods
and increase in others. Moreover, the respective biases of the Paasche and Laspeyres
indexes do not move in step : one may rise while the other falls, On numerous
occasions, the biases become negligible (measured relative to the upper bound of the
COL range for the Laspeyres index, to the lower bound for the Paasche index). The
Laspeyres (Paasche) substitution bias is null when product substitutability is
imperfect in the base period (current period) and when the relative change in prices
is sufficiently small by comparison with this substitution imperfection,

Manser and McDonald have shown by empirical means that they were able to
calculate COLs by using macro-data more disaggregated than those used previously.
The micro-data we have used are even more disaggregated, and lead us to the same
conclusions. At a highly aggregated level, there is no evidence of a homothetic data-
rationalizing utility function, and the Laspeyres index fails to produce a wider COL

*They also contributed to the "theory": see Diewert (1973); Diewert and Parkan
(1978).

’In all fairness, Manser and McDonald's main goal was simply to measure the
substitution bias in the United States CPL.
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range than the Paasche index. This phenomenon may, however, occur on strongly
disaggregated data : we have observed it for coffee beans and espresso coffee.

The plan of our paper is as follows, Section 2 briefly outlines the theory of cost-of-
living indexes. Section 3 describes the methodology for determining—from price
and quantity data— the set of COLs relating to homothetic utility functions for a
given current period and a given base period. Section 4 reports the results obtained
on micro-data. Section 5 examines two issues concerning the existence of the COL ;
the need for adequate data disaggregation, and the "Paasche < Laspeyres" inequality.
Section 6 sets out the proofs of the results in Section 3.

2. The cost-of-living index

The aim of this section is to provide a brief survey of the cost-of-living index (COL)
theory. We recall the strict definition of the COL, show that the COL is bounded by
the Paasche and Laspeyres indexes, and supply the COLs associated with the main
homothetic utility functions. All these results are discussed in greater detail in
Diewert (1981).

For a finite set E of periods =1, ..., T and for a set 5 of n s varieties, we have

quotations for prices p; and quantities sold g7 . It will be recalled that a variety is
. K 4]
defined as a datum on a product in a sales outlet. Let p, = ( p; s € Ry y and g, =

(q ,5 ). s € Rf be the price and quantity vectors for the set of varieties.*

2.1. COL associated with homothetic utility function

To calculate a cost-of-living index, we need a utility function U : Rf — R, that
rationalizes the data (p,, q,)

seE:
Ug) = Max {U(g),qe R} and p.g<p.q} foralltcE

In other words, in each period ¢t € E, the bundle ¢, must be optimal (for /) with
respect to the price vector p, and under the expenditure constraint pg,. The
indifference curve {q € R_": , Ulg) = U(g))} of a utility function of this kind is shown

in figure 1. The COL in a period ¢’ by comparison with period ¢, for a given utility
level u, is defined as the ratio of two expenditures : the minimal expenditure that

4R denotes the set of real numbers, Ry the set of non-negative real numbers, and Ry
the set of positive numbers.
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enables the consumer to reach the utility level » in period ¢’ () when prices are p;

(2,)-

To express the COL in mathematical terms, we therefore need to introduce the
minimal cost CyAu, p) that enables the consumer to reach a given utility level u

under an exogenous price systemp € R, :
Cifu, p) = Min {pg,qe R] and U(g)zu)
The COL between two periods ¢ and ¢'is defined as :
COLpy (U, w) = Cyfu, poY Crou, p)

The quantities O, and O, implicit in the calculation of COL,y; (U, %) :

P& = Cpfw, p) and prQr = CyAu, pr)

are shown in figure 2.

The COL's major drawback is its dependence on the benchmark "standard of living”"
u. At best, we can assume that the latter must lie somewhere between the base-period
utility and the current-period utility, However, the COL does not depend on the
utility level « when’ the utility function U is homothetic, i.e.

Ug)=Ug) = UAq)=Ulg) foralli>0andallg,g'e R].

This fact is self-evident in the special case where U is homogeneous (of degree 1)

U(dq)=ilg) foralli>Oandall ge R}

as, in that case, CrAu, p) = uCA1, p). Hence :

COL,y, (U, w) = u CgAL, po) 1w CiAl, p) = CrfL, po) / Cril, p)

which is written succinctly as COL; (U) or COLyy; when there is no ambiguity

about the homothetic utility function underlying the COL calculation. Among the
most important examples of homothetic (actually, homogeneous) utility functions are
the Cobb-Douglas functions and complementary-factors functions (two special cases
of a more general class of homothetic functions, the CES functions) and guadratic
functions.

®..and only when: see Diewert (1981).
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It is easy to compare the COL with the Laspeyres and Paasche indexes. As U/
rationalizes the data, we have® :

pig = Cilig), p) forallre E

Hence, if L/ is also homothetic :

COLyyy (U) = CefUgs e} pege = pregr/ CiAUan) p o)
Since, under the definition of the cost function Cy;, we have :
CiAg). pr) < prgq. and CrAllAge), p) < pigr

it follows that the Paasche and Laspeyres indexes bound the COL :
Pyyp < COLpye (U) < Lyyy

where Py =pegd prge and Lyyy = peqd poge

¢ Under some additive hypotheses on U such as its local nonsatiatedness: for every
g€ Rf and every neighborhood W of g there exists g’ € W such that L(g") > Li{g).
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Pq =pq. U= U(q)}

A A ‘ >

Figure 1: Indifference curve of a data-rationalizing utility function
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{v=U(q)}

{U=u}
{U=U(g)}

v

Figure 2 : Quantities implicit in COL computation
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2.2. A few basic examples’

A basic example of a homogeneous utility function is the Cobb-Douglas function :

Ug) = ay (g*)* with a>0,05>0 and Y o' =

se8§ ses

When such a utility function rationalizes the data, the assoc1ated COL is the
weighted geometric mean :

G,, = H(E_I?J where w, = Ap =a’
ses \ P Zq: p.e

s'el
Another important example is the quadratic utility function :
172

U(q) = Z as,s'qsqSI

x,5'es

where (ag ;') is a symmetric matrix (whose coefficients are properly chosen). If a
function of this type rationalizes the data, the corresponding COL is the Fisher index

F

ra = Lr'frPl‘/: .
But the simplest example is still the utility function with complementary factors :
X

Ug) = Min{Z_, se§} whereas>0foralls S
a

(figure 3). The associated COL is, quite simply, the Laspeyres index—but also the
Paasche index, since in this case the two coincide.

7 See Diewert (1981)
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Figure 3: Indifference curve of a utility function with complementary factors

3. Calculating the COL : the non-parametric approach

The cost-of-living index implies the existence of a "rationalizing" homothetic utility
function : the calculation of such an index from price and quantity quotations (§4)
therefore raises the following issues :

(1) Does such a utility function exist?

(2} If it does, find for each pair of periods (¢, ) E? the set of cost-of-living
indexes COL,; (L/) associated with the different I solutions to question (1).

3.1. The theory of revealed preferences

Question (1) was first studied by Afriat, founder of the "revealed preferences”
theory.® The theory has also been refined by Diewert (1973) and Varian (1982,
1983). These authors have developed a fairly simple condition—simple at least in its
formulation—that provides an answer to the question "does a homothetic data-
rationalizing utility function exist?" :

*Afriat (1967,1977,1981).
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Theorem 1. There exists a homogeneous, continuous, concave, and non-satiated
utility function that rationalizes the data (p, )i if and only if the following

condition is met :

Piq; P4 P4,
pi‘?i quj pmqm

>1 (1)

Jor all "cycles" of periods i,j, k, ... ,m,i € E.

This is known as the HARP (Homothetic Axiom of Revealed Preference) condition.
The cycle of periods i, f, & ..., m, i is not necessarily arranged in chronological
order; moreover, it is of arbitrary length. The left-hand member of inequality {1} is a
chained Laspeyres index of guantities. Like the price indexes of its kind, this index
has a "circularity defect,” i.e., it does not return to 1 if the quantities return to their
initial values. The HARP condition implies that the circularity defect is always in the
same direction.

The first problem, therefore, has found a theoretical solution. In practice, the
verification of this condition is extremely cumbersome when the set of periods £
exceeds a few units. Varian (1982, 1983) has proposed an algorithm that allows such
a verification (§3.3).

3.2. Expressing the range of COLs

Having established the condition for the existence of a homothetic data-rationalizing
utility function, we have to determine the associated COL between any two periods
in E. In fact, there are usually several rationalizing utility functions (because the ¥
set is finife). This means there is no unique COL between two given periods. We
must therefore identify the complete set of these COLs. As we have seen (§2.1), the
set is bounded from above—usually strictly—by the direct Laspeyres index and
bounded from below by the Paasche index. Manser and McDonald {1988) have
determined the exact bounds of the COL range between any two periods :

Theorem 2. Let us assume the HARP condition is satisfied. The set of COLs of
period i calculated relative to period j is the closed interval [1/A;; ; Aj;] where

Aij _ Pidi Y Pidy Pidi mpmqj
P;4q; Pidy Prdr Pm9m
for any sequence of periods i, k, I,...,m,j € E.
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In this formulation, the COL relate to the homothetic data-rationalizing utility
functions. The period i does not necessarily follow j in time. Manser and McDonald
appear to have taken for granted the fact that all the points in the interval [I/Ajl- ; Aij]

are COLs :

Proposition 1. Let us assume the HARP condition is met. If U and U' are homothetic
data-rationalizing utility functions, then for all pericds i, j € E and all 2 € 10, 1],
there exists a homothetic data-rationalizing utility function U" such that

COL;j (U") = 4 COLyj (U) + (1-1)COLj; (U').

We give the proof of this result in §6. The utility function U" depends on the periods
i and j (and on A). It may be assumed to be linear in segments, as we obtain the
following result (§6} :

Proposition 2. For any homothetic utility function U rationalizing the data (py, g},

and for any pair of periods (i, j) € EZ2, there exists a utility function V of the form
V(g)=Min{ Apq,t=1,..,T}

where 4; > 0 (t = 1, ..., T) such that V rationalize the data and COLj; (U) =
COLj;j (V).

Figure 4 plots the indifference curves for such a utility function. We observe that the
tangents to the indifference curves along a radius issuing from the origin are parallel.
This is & general property of homothetic utility functions. The finding will be very
useful for analyzing the results on micro-data (§4.3).

Figure 4: Indifference curve of a homothetic data-rationalizing utility function
that is linear in segments
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3.3. Algorithm

Given the large number of varieties, it is impossible to verify the HARP condition or
to calculate the COL range (cf. Theorem 2) without a suitable algorithm. Like
Varian (1983), we have used Warshall's algorithm (1962), which combines a matrix
M=(m ;j) with the matrix D = (a’,-j) such that

dy= infi pi..om j Mg + Mg+ +mp).

In other words, if mj; represents the "cost™ of direct passage from i to j, then djj

represents the minimal "cost" of passage from i to j for the set of paths leading from i
to . We can show that the matrix D is obtained as follows :

(Dletk=1
(2) forall &, j - if mjj 2 mjg -+ mjg; let mjj=mik + mg;
(3)ifk<Tletk=k+ 1 and go to (2); if not, let dj; = mj; for all £, j. END

Warshall's algorithm enables us to calculate the quantities

. ‘ Pmd
mfi k,l,...,m,jln Pidr Pidi Amd
! Pidi Pede Pum

by positing mjy = n2e9L then, by applying the exponential function (which, like

Pey
the log function, is increasing), the quantities

Pidr Dedi Pmd;
Pid; Prdy Pnlwm

N, ktm

We can immediately deduce the bounds I/Aﬁ and A,-j of the COL range. Warshall's

algorithm obviously allows us to determine if the HARP condition is met : if, in a
step &, we have mj; <0 for an i, then the HARP condition is not met.
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4. Application to micro-data

We will now apply the resuits of §3 to the calculation of the COLs associated with
the different homothetic utility functions that rationalize micro-data, These consist
of scanner data supplied by the AC Nielsen firm and covering three products :
coffee, edible oils, and detergents.

4.1. Data description

The prices and quantities were collected weekly over the period 1994-96. Quotations
were gathered in more than 400 supermarkets and hypermarkets. The varieties are
accompanied by highly detailed product descriptions. These enabled us to define a
concept of elementary product corresponding to a very fine level of disaggregation.
At the end of the exercise, we had 523 distinct elementary products for edible oils,
383 for detergents, and 1,168 for coffees! The advantage of such detail is that we can
fully track product substitutions, The downside is that the cross-tabulation of the
elementary products and the sales outlets yields a very high number of varieties, a
sizable proportion of which are often unobservable. This problem is solved in two
ways : (1) by a monthly aggregation of the data (summing the quantities and
calculating a weighted price average); (2) by reaggregating the outlets into four
categories (summing the quantities and calculating a weighted price average) : small
(large) supermarkets and hypermarkets. For each of these four types, we add up the
elementary products sold in each month of the period studied {January 1994 —
December 1996} in at least one outlet. This ¢liminates new products and products
temporarily or permanently withdrawn from any one of the four types of outlets. We
obtained 138 elementary products for oils, 133 for detergents, and 353 for coffees,
accounting for 91%, 75%, and 92% respectively of sales before simplification. In the
end, for each of the thirty-six months of the period examined, we obtained the
average selling prices and average quantities sold for 333 varieties of oils, 424
varieties of detergents, and 895 varieties of coffee.’

4.2. Results

The results of the COLs obtained on these micro-data are reported in charts la, b,
and lc. The charts show, for each of the three products, the range of COLs in a given
month relative to January 1994. For example, with January 1994 (month 1) as the
base (=100), the COLs for edible oils in August 1995 (month 20) take on all the
values between 107 and 107.75.

’Magnien and Pougnard (1998).
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It should be remembered that these COLs are associated with the different
homothetic utility functions that “rationalize" the data pertaining to the largest
possible set of periods. They are not the utility functions that rationalize the data
ranging only from the base month, January 1994 (month 1) to the month of study.
And they are even further removed from the utility functions that rationalize only the
data of the base month and the month of study. For coffee, we were able to
rationalize all the data (month 1-36); for oils and detergents, we were only able to
rationalize months 1-26 and 1-27 respectively.

The range does not widen with time. In fact, it can even narrow to practically a
single point, as in the case of detergents in month 13. The Fisher index lies
consistently inside the COL range for coffee (charts 2b). This does not mean,
however, that a quadratic utility function rationalizes the data. Conversely, it is clear
that there is no such rationalizing utility function for oils and detergents, since in
several months the Fisher index departs slightly from the COL range (charts 2a
and 2¢). No Cobb-Douglas function rationalizes the data, whether for coffee, oils, or
detergents. In all three cases, the index of the weighted geometric mean lies outside
the COL interval.
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Chart 1a: COL range for edible ails
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4.3. Relative  variation in prices and product
substitutability

The L-P interval is strictly larger than the COL bounds for edible oils {chart 3a) over
most of 1995 (months 15-24). However, in months 9-14, the Paasche index coincides
(or nearly} with the smallest COL whereas the Laspeyres index lies well above the
largest. This phenomencn occurs during a period of sharp price increases. We
observe the same phenomenon with detergents in months 16-24 (chart 3c).
Symmetrically, in month 6 for edible oils, months 4 and 6 for detergents, and
months 32-36 for coffee (chart 3b), we observe a situation in which the Laspeyres
index coincides with the largest COL, whereas the Paasche index is strictly inferior
to the smallest.

In sum, the respective substitution biases of the Paasche and Laspeyres indexes,
measured relative to the COL range, move rather differently from each other but also
over time. They can become null or nearly null in different periods or
simultaneously. Diewert (1990, p. 87) has indicated that the weakness of the
Laspeyres (Paasche) index bias relative to the COL was due to an appropriate
relationship, in the base period (current period) between the relative price variation
and the substitutability of the varieties (products or outlets). We will show that the
rationalization of data by the [linear-in-segments utility functions (cf.
Proposition 2}—whose indifference curves consequently exhibit sharp inflections—
lead to an extreme application of this analysis.

For this, let us consider the COL pertaining to a homothetic utility function U of the
form described in Proposition 2. We have :

COLyy (U) = CeAUlgp), pe)  Prdr = Prrgr! CAU@y), py)-
(cf. § 2.1} Let Qu(Q)) be a commodity bundle such that pp Q= Cuy(U(gy, py)
{ pQ; = Cyy(U(ay), p). These bundles are shown in figure 5a. We have :

COLy (V) = PO/ P4y = Prarl DG
Even if the relative variation of prices is small (in other words, if the direction of
vector Py differs little from that of ), the composition of the bundle (), (which
procures the same utility as §, but under the price system ;) is distinct from that
of gy. This is due to the strong substitutability between wvarieties in the
neighborhood of ¢, where the utility function is locally linear. The value P, {, of
bundle Q, is thus below P, 4,. The Paasche index Py (equal to Py G,/ Py Gp) is
therefore below COLyy (U) (equal to Py 4p/ P, (). By contrast, owing to the
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strong bend in the wutility function in q, {(where the indifference curve displays a sharp
inflection'®), i.e., owing to the low substitutability between varicties from this

bundle, the same bundle (Q- = ¢} maintains the utility level U( ¢, ) under the price
system Py despite the fact that the system is moving in a different direction from

D, . The Laspeyres index, therefore, is equal to the upper bound of the COL range :
Lop = Pr 4,/ Dy 4, = Py O/ Py = Cul Pr, U(q: )/ Pr 4 = COLps(U).

'9Sp that, locally, the utility function resembles a "complementary-factors” function
(figure 3).
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u = Ug)

u=Ugy)
u :U(q,,)
u=Ug)

Figure 5b: The Paasche index displays no substitution bias
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For the two values to coincide, however, the re/ative variation in prices between ¢
and ¢’ {measured by the "gap" between the directions of g, and Py} must not be too

great. It should lie within the limits allowed by the "degree" of substitutability of the
products in g, measured by the "bend" of the indifference curve in that point.

Specifically, Py must belong to the core C of prices p such that :

p4: = CrAp, U(4,)). The cone is shown in figure Sa.

Figure 5b illustrates the symmetrical case of a homothetic utility function for which
the COL coincides with the Paasche index while staying below the Laspeyres index.

The conjunction of the two cases described above {existence of a homothetic utility
function for which the COL is equal to the Paasche index and another for which the
COL is equal to the Laspeyres index) occurs frequently with coffee (chart 3b).

5. Existence of the COL and data disaggregation

5.1. The need for effective data disaggregation

Given the apparently restrictive character of the homotheticity condition, it may
seem surprising that the HARP condition is satisfied for such long periods as the 36
months tracked for coffee, 27 months for detergents, and 26 months for edible oils. It
is worth noting the narrowness of the COL range : approximately less than one index
point for oils and detergents, no more than three points for coffee (coffee prices,
however, registered very wide swings).

On macro-data, Manser and McDonald (1988) have tried to explain the existence of
"rationalizing" homothetic functions by the high disaggregation of the data they
used. In other words, the robustness of the HARP condition test would be due to the
great detail of the micro-data. To verify this, we tested the condition at various levels
of aggregation of coffee and detergent data. The levels are determined by the list of
variety characteristics. Besides the type of sales outlet {of which there are four), they
consist of the following : producer (or distributor), brand, reference, packaging, and
content. Each of these characteristics has different modalities : packaging is defined
by the type of container (jar, can, box), the number of packs sold together, and the
total weight. Content description for coffee is even more varied : form (beans,
ground, espresso), quality (regular or decaffeinated), botanical variety (arabica,
robusta, or blend), and provenance. These different contents have been assembied
into a smaller number of "items.""’

""Magnien and Pougnard (1998).
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The aggregation levels adopted are listed in the table below :

Coffee Detergents
Data | Characteristics adopted Number | Rationa- | Number of | Rationa-
aggre- of lized varieties lized
gation varieties | pertod period
level
1 ftem 5 22-30 12 13-15
2 Item and sales outlet type (S8O) 20 9-32 48 12-16
3 Item, SO, and producer 264 8-36 216 1-20
4 item, SO, producer, and brand 329 8-36 320 1-23
5 Item, SO, producer, brand, and 362 1-36 - -
reference
[ All 895 1-36 424 1-27

The table also shows the number of varieties for each level and the longest period for
which the HARP condition is met, ie., for which the data are optimal for a
continuous, concave, non-satiated homogeneous utility function. The figures
effectively show that the period length increases with the level of disaggregation.
Moreover, the COL range also widens with the level of disaggregation (chart 4).
With detergents, at the most aggregated level (level 1), only three consecutive
months were rationalized. In many instances, the HARP condition test actually failed
over a two-month period. In these cases, the Paasche indexes (i.e., the ratio of one of
the two months to the other) exceeds the Laspeyres indexes.'” We analyze this
phenomenon in §5.2.

Chart 4: Width of COL range as

a function of data aggregation level

(Coffee)

Level @

Level s

2,5

100

1,5

QOctaber 1995 (month 22}

0,5

22 23 24 25

26

12These indexes are calculated on aggregated data.
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5.2. The P <L inequality

For the Paasche index to be smaller than or equal to the Laspeyres index, one
condition suffices : the existence of a homathetic utility function that rationalizes the
data for fwo periods : the base period and the current period (but not necessarily the
others). This finding was established in §2.1. Theorem 1 shows that this condition is
also necessary. The inequality Pj/i <Ly ie.:

P,4q, < P4,
P4, P4,
is also written :

bd; P4,
piqi‘ quj

21

which is, quite simply, the HARP condition for the set of periods 7 and .

Proposition 3. The Paasche index for t’ relative to t is smaller than or equal to the
Laspeyres index if and only if there exists a utility function that rationalizes the data

(Pr, 4r)and ( Py, 4r).
Hence the P < L. ineguality describes the situation of minimal consumer rationality.

For coffee, oils, or detergents, the inequality is satisfied with the entire set of micro-
data at their most disaggregated level. If, however, we restrict the analysis to—for
example—the "coffee beans" or '"espresso coffee" items, and again using
disaggregated data, the Laspeyres index is sometimes smaller than or equal to the
Paasche index {charts 5a and 5b).
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Chart 5a: Coffee beans
Paascha and Laspeyres indexes
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Chart 5b: Espresso coffee
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For coffee beans, we combined the quotations for arabica (higher-grade and thus
more expensive products) and quotations for blends. We obtained the following
price and quantity changes between months ¢ = 1 (the base month) and 7' = 18 (June
1995, the month with the sharpest index inversion) :

Coffee beans average price | average price’ { change in quantities
inmonth 1 (py) |in month 18

(P1s)
arabica 10.3 15.3 - 40%
blend 5.0 8.7 -21%

1. French francs

In relative terms, however, the larger price increase was for blended coffees :

pre | pia® = 057 and pl™ | pi = 049

while arabica registered the steeper fall in quantities sold. The movements are
plotted in figure 6. This shows a utility function rationalizing the data for dates ¢
and ¢’ . But the function cannot be homothetic : the price and quantity configuration
is such that the tangent in 4 to the initial indifference curve cannot be paralle! to the
tangent to the indifference curve in g,  (likewise, the tangent in B to the current
indifference curve cannot be parallel to the tangent to the indifference curve in ¢,).
This contradicts the "parallelism™ property of the tangents to the indifference curves,
which characterizes homothetic utility functions (figure 4).

A Arabica /

q .
/ o -~ A
V% o
/_,/’ \
A & Blend

<
Figure 6 : The paasche index can exceed the Laspeyres index

o

A 4
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6. Mathematical demonstrations

The purpose of this section is to demonstrate Theorems 1 and 2 and Propositions 1
and 2. These proofs are based on four lemmas. Lemmas 1 and 2, as well as their
proofs supplied here, are taken from Afriat (1981). Lemma 3 combines classic
results (from no specific authors) : we have tried to prove it in the simplest possible
way. We admit Lemma 4, which allows a demonstration of the necessity of the
HARP condition, for this result is not employed in our study. For its proof, we refer
the reader to Varian (1983). Proposition 1, and therefore its proof published here,
seem to us to be a new finding.

The theory rests on the minimization of "chained Laspeyres" indexes for quantities.
The following values

A= Infi s {P:qk Pdr pmqj}
pa; P4, Pulm

effectively play a key role. The sequences of periods 4, k, {, .., m, j are not
necessarily arranged in chronological order and their length is random, so that the inf
is not necessarily a min.

Lemma 1 (Afriat, 1981) : If the HARP condition is met, then :

0] A= .Mrl'njj i _{piqk Prdp . Pmd;

o, . (A;; is therefore a
™ piai Prdk pmqm} v

minimum}

(#) A;>0 foralli,jeE;
(i) A,-]-Ajk > Ay forallij ke E;
(v)y Adj=l1forallicE

v} Aji = I/Alj foralli,j e E
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Proof. (i} According to the HARP condition, in the expression 4 jj we can assume the

periods &, /, ... , m are, in pairs, distinct and different from / and 7. The lower bound
is therefore a minimum. Condition (i) results, trivially, from (7). According to (3),
there exists a sequence of periods i, /, m, ... , n, j and a sequence of periods /, r, s, ...,
¢, k such that

- P Pids P,

Aij .
Pl Py Pudn
and
4y = Pir Prds  Pudk
7k :

P4 Prdr P

From the definition of 4;; we get .

< P4 P Pmdj Pi9r Pds  Pedk

A < . .
T D PrAk Pmldm P4 Prdr Py

= Ak

fori, I, m, ...,mJ, 5, ..., kis asequence of periods from i to £. The property (iif)
is therefore satisfied. According to HARP, 4;; = 1. Moreover, by definition, 4;; <

P,
b4,

= 1, hence (iv). The property (v} results from (i) and (iv). ¢

Lemma 2 (Afriat, 1981). Let i, j € E. [f the HARP condition is met, there exists a set
of numbers Uy, ..., Ur> 0 such that .

(i) Up Uy < Ay foralll ke E;
(i) U,‘/ (.])' = Ajf'

Proof Let Up=A {ik for ali k£ in E. Then equality (¢) of Lemma 2 follows immediately
from inequality (ifi) of Lemma 1. ¢
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Lemma 3. Let Uy, ...

Uy Uy

P4,

ey

<

, Ug> 0 such that :

foralllLk e E.

(§) Condition (i) of Lemma 2 is satisfied,

{ii) The utility function defined by

Uy) = Min{U,ﬁ’i s ieE}

is homogeneous,

rationalizing;

(i) Ug) = Uj

P E

concave,

and C(p,) =

monatonic,

_ P4,
U

COMITRUOUS,

forailiec E.

1

non-satiated, and data-

(CiAp), or more simply C(p), denotes the unif cost function associated with U :
C{p) = Min{pg,q € R} and Ug)=1}).

Proof. (i) Let i, j € E. According to Lemma 1-(2), there exist m, r, ... , & such that

pl'q?" P,

ijJ pmqm

foralii,je E
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pJ'q?” P4,

ijj pmqm

Ur

U,
pidy P4,
P4, Pidy

Yn
U,

24y 24,

. P, P4y
LU
v, U,

=4..

vl
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(i) We need only show that U rationalizes the data : the rest is self-evident. If [/
does not rationalize the data, then there exist j € E and ¢ € R_f such that Ui{(g) >
U(qj) and piq < pig;. According to the first inequality, and by construction of U,
there exists 7 such that :

P4,
U2 <y, 2L trankek
Py, Pl
P4, Pl
whereas UJ_ <U, =/ by hypothesis for Uy, ..., Uy Hence UJ <y /" and
P, Pjd;
therefore
P4 . . . .
> 1, which contradicts the second inequality : Piq < pjg;.
P4,

(i) By hypothesis, we have

p_,lqj
UiSb}'
p_qu

Joralli,je E

with an equality if j = i. Therefore :

U= Mniu, 220 jeEpl=Ug) forallicE
quj

In addition :

pi; = C(Ug;), Py for {/ rationalizes the data
= QU pi)
=UC(pp for U is homogeneous
sothat C(p,) = p,?q,“ .
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Lemma 4. (Varian, 1983) If U is a homothetic, non-satiated utility function that
rationalizes the data, then the HARP condition is met.

We can now supply the proofs of Theorems 1 and 2, and Propositions 1 and 2.

Proof of Theorem 1. The HARP condition is sufficient according to Lemmas 2 and

< P4,

3, with the observation that A,, < . The condition is necessary according to

P,

Lemmad4. +

Proof of Theorem 2. (a) Let U be a homothetic, data-rationalizing utility function
and C the associated unit-cost function. We have :

< ) L, forallijcE
C(p,)
ie.,
. C ; [ )
p;q: _<.-. (p:) S qu foraili,_]'EE-
Let
P4 .
; = —— forallije £ *)
C(p,)
Thus
P, < QJ_ < Pq; foralli je F.

P4 R D4,

Therefore, according to Lemma 3-(i)

Ui
1/4, << 4, foralli je E.
. U,'
Hence, with (*) :
C
/A, < L) <A, forallj j € E.
Clpy)
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Thus, COL/j (U) lies in the interval [lfAj,- ; Aif] foralli j € E.

(b) Reciprocally, let i, j € E. Let us consider the series Uy, ..., Uy of Lemma 2. Let

U be the utility function defined in Lemma 3-(if) and C the associated unit-cost
function. We have :

A,

Y

COLy; (U) = Clp) _ p4 U _ pa 4 =
i = = =
’ C(pf) P4, Ui P4, ’

Likewise, we construct another utility function such that :

Clp;)
L= = Ay ie COLy(U) = 1/A,.
C(p;)
Thus, the bounds of the interval [liAﬁ ; A,j] are COL;/; indexes.

We must now prove that a// the points of the interval [1/A \ji 5 A zj] are COL/; indexes.
This result is the object of Proposition 1. ¢

Proof of Propositions 1 and 2.

Let

C.
K={Cp,...Cr>0, 1/A;< —CLSA,-J- forall i, j € E}
J

={Cj, ...Cp>0, ;< A; C; forallije E}.

i~

This set is convex. Let us take, for all i, j € E, the numeric function ¢j; : Rf + DR

C,
defined by ¢i(Cy, ..., Cp)= C—' Since this function is continuous and X
J
connected, according to the theorem of intermediate values, the set ¢;{(K) is an
interval. Under the definition of K, this interval is included in the interval []/Aj,- ;
Aij]- According to point (b) of the demonstration of Theorem 2, the interval ¢h;;(K)

reaches the bounds of the interval [I/Aj,- ; Aij] (the C; values take the form C(py) for a

utility function chosen as in (b)). Thus, g;(K) = [lf’Aj,- ; Ay-] foralli j e E.
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Let us now fix i, j € £ and take x [I/Aji ; A,-j]. There exist (Cy, ..., C7) € K such

P

C.
that x = —= . Positing U, = , we have

7 k

forallk [ € E.

Ur_ Pt Ck P11 g o PRO
= kK= il =
Ur  pedr G Prdx Pidk

Therefore Uy, ... , Uy satisty the conditions of Lemma 3. Let U be the associated
utility function as in Lemma 3-(if) and C the associated unit-cost function. The U

function has the form mentioned in proposition 2 with a, = — : moreover, it

p.q,
rationalizes the data. According to Lemma 3-(iif), we have C(pg) = Cp forall k € E,

Ciln;
so that x= —ﬂ In other words, x = COL;/(U). Thus, all the elements of the
Clp;)

interval [lfAj,- ;A,-j] are COL;/ indexes. ¢
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7. Conclusion

The most important finding—which is far from immediately obvious—is no doubt
the observation that the prices recorded and the quantities traded in the market can
be rationalized by a homothetic utility function, all the more easily as the data are
strongly disaggregated. The cost-of-living index is thus not only a theoretical
concept. Its existence is demonstrated for consumer staples such as coffee, edible
oils, and detergents. Admittedly, the calculation of COLs requires the use of scanned
data, but it is reasonable to assume that such data will become more affordable in the
relatively near future.

Our study provides a gauge of the quality of standard price indexes, measured in
terms of their closeness to the COLs. It confirms the reputation of the Fisher index as
a very good proxy for the COL, since it lies almost always inside the COL bounds. If
we consider a Fisher index value inside the bounds, there exists a data-rationalizing
homothetic utility function for which the Fisher index serves as a COL
(Proposition 1); there also exists a quadratic utility function that defines the Fisher
index (§2.2), but there is no evidence that the utility functions coincide, or even that
a quadratic utility function rationalizes the data.

More generally, the determination of the COL bounds comprises the following
limitation : we cannot say whether two successive COL lying within these bounds are
related or not to the same utility function. Consequently, we cannot measure a price
movement with precision, but merely the bounds of the movement. The precision of
these bounds will obviously depend on the width of the COL interval. However, that
width is of the same order of magnitude as the 95% confidence interval for the
precision of the CPI groupings (for example, for the "edible oils” grouping of the
French CPI, the width of the confidence interval is 2 % for the December 1998
change on one year earlier).

Unlike the Fisher index, the geometric mean frequently oversteps the COL interval
{except for coffee), and is thus an inferior proxy of the COL. Like the Laspeyres
index, but less so, it overweights the products whose prices rise most steeply.
Apparently, therefore, the Cobb-Douglas function does not always take into adequate
account the substitutions between products or sales outlets. In other words, the
geometric mean—adopted by most countries for all or part of their item indexes—
offers one major advantage : it avoids the drift of the arithmetic-mean formula when
chaining is practiced.
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Regrettably, there is no unique COL at a given date—here, a given month of the
period studied. This is due to the discrefeness of price and quantity observations,
The scanner data, however, are collected weekly, which ought to provide a good
proxy for continuous price and quantity monitoring. A classic theoretical result is
worth recalling here : with continuously observed data, and under certain
assumptions, the COL is unique and coincides with the Divisia index. However, by
increasing the frequency of quotations while remaining at a detailed product-
definition level, it is hard to demonstrate the convergence of the chained indexes
toward that unique index, probably because such an approach strongly increases the
non-observability of the varieties (Magnien and Pougnard 1998).

154 INSEE Méthodes



References

S.N. Afriat (1967), "The Construction of a Utility Function from Expenditure Data,"
International Economic Review, vol. 8, pp. 125-33.

S.N. Afriat (1977), The Price Index, Cambridge (U.K.) : Cambridge University Press.

S.N. Afriat (1981), "On the Constructibility of Consistent Price Indices Between Several
Periods Simultaneously,” in A. Deaton (ed), Essays in Applied Demand Analysis (Cambridge
: Cambridge University Press).

M. Boskin, E. Dulberguer, Z. Griliches, R. Gordon, and D. Jorgensen (1996),
Toward a More Accurate Measure of the Cost of Living, Final Repeort to the U.S.
Senate Finance Committee, December.

W.E. Diewert (1973}, "Afriat and the Revealed Preference Theory," Review of
Economic Studies, vol. 40, pp. 419-26.

W.E. Diewert (1981}, "The Economic Theory of Index Numbers : a Survey," in A.
Deaton (ed), Essays in the Theory and Measurement of Consumer
Behaviour (Cambridge : Cambridge University Press), pp. 163-208.

W.E. Diewert (1990), "The Theory of Cost-of-Living Index and the Measurement of
Welfare Change," in W.E. Diewert (ed), Price Level Measurement.

W.E. Diewert and C. Parkan (1978), Test for Consistency of Data and
Nonparametric Index Numbers, Working Paper 78-27, University of British
Columbia (Canada).

W.E. Diewert and C. Parkan (1985), "Test for Consistency of Data," Journal of
Econometrics, vol. 30, pp. 127-47.

F. Lequiller {1997), "L’indice des prix 4 la consommation surestime-t-il I’inflation?"
Economie et Statistigues, no. 303 (available in English on the INSEE Web site as
"Does the consumer price index overestimate inflation?" INSEE Studies,
www.insee.fr}

F. Lequiller (1998), "Biais des IPC : ol en est-on?" INSEE Méthodes, no. 84-85-86,
pp. 291-312.

F. Magnien and J. Pougnard (1998), "Etude du chainage d'indices de prix a l'aide de
micro-données,”" INSEE Méthodes, no. 84-85-86, pp. 247-82.

M.E. Manser and R.J. McDonald (1988), "An analysis of substitution biais in
measuring inflation, 1959-85," Econometrica, vol. 56, no. 4, pp. 909-30.

INSEE Méthodes 155



B. Moulton (1996), Constant Elasticity Cost-of-Living Index in Share-Relative
Form, Bureau of Labor Statistics (BLS), mimeo.

H.L. Varian (1982), "The nonparametric approach to demand analysis,"
Econometrica, vol. 50, no. 4.

H.L. Varian (1983), "The nonparametric tests of consumer behaviour,” Review of
Economic Studies, vol. 50, pp. 99-110.

S. Warshall (1962), "A Theorem on Boolean Matrices," Journal of the American
Association for Computing Machinery, vol. 9, pp. 11-12,

156 INSEE Méthodes



