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Abstract

In Principal Component Analysis, an estimation of a parametrized gaussian model with noise is investi-
gated. We define an estimate that relies only on the explanatory variables: the M.L. estimate.

1 Introduction and main Theorem

The estimation of mean and covariants by maximum likelihood (M.L.E.} out of an i.i.d. sample
of Gaussian random vectors has been treated extensively in the literature since the pioneering
work of Anderson (1963}, and later Muirhead (1982), etc. [t turns ous that part of these results
are only available through delicate combinatorial or insufficiently explicited arguments which
give little insight with respect to the mathematical structure of the problem,
One of the purposes of this paper is to present an alternative approach to this question. By
doing so, we provide some improvements with respect to both theorem formulations and preofs.
In many situations, n independent observations are taken on p correlated variables with, of
course, # > p. Let ¥ € RP be gaussian N,(u, B); the parameters 4 and T being unknown. We
assume that the g largest eigenvalues of & are distinet (of course ¢ < p), and that the remaining
(p — q) eigenvalues are equal and non null.
Interpretation: the ¢ explanatory variables are associated to the g greatest eigenvalues, the
noise corresponding to the smallest (multiple) cigenvalue.
Denoting by (Ar)i<i<p the eigenvalues of X, we look for the M.L.E of 4 and ¥ satisfying:

A A o Ag > A= =520, {1

So we are dealing with a situation with a noise.

Among other tocls, the proof of Theorem 1 relies on methods of differential geometry.
Part {II) of Theorem 1 provides a concrete way for computation of this maximum likelilood
out of the data. Theorem 2 gathers the technical tools for the proof of Theorem 1.
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We prove a Theorem which gives in particular the M.L.EX of 4 and satlsrymg {1); the data
AK€ 1, Y2, -1 U Ll from Np(ps, X, the density of g = (y1,ya,- -+ ga)

- ) . 1 e
(2m) /2 (des(X)) 7] expl~5{y —p)' X Yy — ),
up to multiplicative an positive constants, the loglikelihood is:

Laip, ) = —ldet(L)] - Te(SE™) — (¥ - 1, 27 g — )}, )]

with § := ~ Z y;, the empirical mean; and S := E(y, ¥ {m ~§)T the empirical covariance

operator. Smce, (F— L~ g - ,u)) > {0, with equa.hty iff u =7 for any fized I, L,(p,2) has
2 unique maximum: Z = Z. Therefore one has to find the maximoum of the function L,

for 2 € U & M, the subset I{ being defined by (1), and L{X) := — In{det{L}} - Te(SE~1). Here
M denotes the set of symmetric and positive definite operators. It Is ciear thai the eigenvalues
of § are distinct (a.s), we denote them by 5, > 89 > -+ -5p > 0.

Theorem 1 (I} Onlf, L attains o mazimum for a unique 5 characterized by (i)
and (%i):
(i} the ¢ greatest cigenvalues of £ are the same as the corresponding ones in S
Aj =35, (1 £7 < q), with (resp.) the same eigendirections.
(i1) the (p — q) smallest eigenvalues :\}- {ofT), (¢ +1 < j <) are equai to:

here the eigenspace is the subspace orthogonal to all eigendirections of (i),
(IT) Moreover, any mazimizing sequence: [1.e{E, € Ulnen » hm (%) = L)
converges to b5

Remark: Part (1I} of Theorem | provides an algorithm which gives a concrete way for the
computation of the M.L.E. ous of the data.

2 Biographical comments

Theorem 1 appears already in the literature [7] with a different proof, though not entirely
explicit. In [} the author mentions that this theory does not haold, when some of the ); are
equal, nevertheless he guesses the correct result without proof. In (1], 11.3, the situation is quite
similar to what is done in [7] ; but the situation seems better settled ; in [2], Theorem 2, T.W.
Anderson gives a rather technical combinatorial proof of Theorem 1, (I).

The proofs of theorem 1 part {I} given [1}, [2], (7] and [9] cannot give any direct proof of our
Thecrem 1 part (1I).

In the following, it is convenient to use a change of variables, setting @ = E~1,.
Vi= {8 e Mt ;07! eld}, F(B) 1= L{O7}), so F(O) = In{det &) — Tx(56}.
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3 FExistence of a maximum

Lemma 1 (E_xistence of a mazimum) Let V the closure of V in M7, the function F resches a
maztnunt on V.

Proof We establish that F tends to —oo, as © tends to oo on M*, ie that for every a € R,
{® € Mt ;F(8) > a} is compacy, 50 F admits a maximum on every closed set (# 8} of M™,
{particulary on the W, (k & K, introduced below].

(¢} on one hand, Tr(58) > ”%e’li_”
P

In fact, let © = Z 7305 & represensation of ©, where the {4 are orthogonal projectors of
j=1

rank 1, and pp 2 05 > 0, (7 < p)-
As py = O, and S is positive, Tr{(5@Q;) = 0, thus:

Tr{S0) 2 ppTe(SQp)

> ppymin{Tr{5Q); Q arthogonal projector, with rk(Q) =1} ;

the minimum is reached for @ projector on the subspace of .S corresponding to the smallest
cigenvalue: s, = {I51| 71
on the other hand In{det 8) < pln O], therefore F{&) ~» ~-c0, as ||@] — oc.

() As py is the smallest sigenvalue of 8, so g1 = ||©71]~! and:

In{det®) < (p—1}lnp,+Inm
< (p-1)mie| -mje™t.
Thus, as Tr{58) > 0, F{®) — —ox, when |©7!|| — o0, |©] being bounded. []
Let ¥ be the closure of V in M™%, V is aiso the set of the elements of M¥, the eigenvalues of
which satisty:
O<pZpS - SpSpn==0p. (3
We snall use the fact that V admits the following partition: For fixed p > ¢, we denote
by K the set of families of integers k := {ky, -k}, such that & — ki.p > L{1 £ ¢ < (K]},
[convention ky = 0f; ki—1 < ¢, ki, = p; The set X has exactly 2% elements.
Interpretetion: the k&, (1 > 1) gives the position of the strict inequalities in (3).
For each k € K, let Wy denote the subset of M, ihe eigenvalues of which satisfy p; = pg,,
(hiy <j < |kf), and pg,_, < poya{hi €7 < 5:,(2 <4 < [k|); then:

V= Z Wi (partition of V), | in particular ¥V = Wi, where kj = i].
ke K

- Each Wi is a smooth, finite dimensicnal manifold imbedded in AM*, hence a point of ¥,
at which ¥ reaches a maximurn is a critical point, of the restriction of ' to one of the W,.

Actually Theorem 1 is a particular case of the fotlowing result:

Theorem 2 For every k € K, the restriction of F' to Wy reaches a mazimum at o unique point
Q. As in Theorem (1), the maximizing sequences converge.
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4 Proofs of the main results
Lemma 2 G € W s a critical point of F iff:
(i) there is a simulloneous diagonalization of & and 3,

(if) there erist an ordered partition = = {m,--- 7wy} of {1,---,p}, with
|mif = ki — ki1, sueh thet:

pk. P k' Zsj, (1<i<K),

jem

In particular, ' has, at least, one critical point in W1.‘, namely the poimt, denoted ék,
corresponding to the partition #* defined by 1r§‘ = {k_1 + 1,0, K}, (1 < i< [kl
Proof It is classical that the tangent space to Wy at © € W is linearly generated by the
(et
spectral projectors Py, .-+, Ay of © = Zpk‘. P;, Itengent to the affine sub-manifold generated

i=1
Jf

by the elements of Wy of the form Z vy, ;] and the commutators (@4 — 49), with 4 € L{RP}

=1
antisymmetric, [tangent to the orbit of © under the action of SO(p)].
For any X € L(RP), symmetric [tangent to M), we have

< F'@), X >=Te{® ' X} - Tr{5X),

(here <, > denotes the duality bracket). Beginning with the subspace generated by the 84— A48,
as Tr{©71({8A4 -~ A8)} = (, the condition < F'(@), (9A AS) >=0 is equivalent to:

—Te{S(BA — A6)} ~ Tr{(SA — 4518} = 0;

then, representing the operators by their matrix in an (orthonormal) basis where 5 is diagonal;
if, for © # §, the only non zero coefficients of A7) are Ag‘j) = 7}12:‘” =1, then:

Tr{SAE) - AGDSB) = 2s; — 5,)8;;, thus the condition is equivalent to By = 0, (i # 7).
If m; < {1, --p} is such that the range of the spectral projector ﬁ of 8 is generated by the
eigenspaces of § corresponding to the eigenvalues {s;}ser;.

The condition < F/{@), B >=: 0 can be written:

(ki — b1}y = Tr{®T'B} =3 5.0

Jemg

Lemma 3 (Comparing the values of F on_the different critical points in W) Let & e Wk e
critical point of I, distinct of O, then: F(B) < F(&y) .

Proof First, we remark that, for every critical point BeV, ’I‘r{S(—)} = p; it is sufficient to
estabiish: det(By) > det(8), or det(Ty) > det(5).
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But, Z Z 3iPy; a8 85 > sj.1 and F5 > By, (2 € § € p), for any permutation
1%j<p Y 1<j<p
7 € Gy, we have: (see [4], Th 368, p. 261)

Z SJ‘DJ< Z 33"’%)

1<<p

Furthermore, there exists (at least) one permutation o such that

Y Fuy — Tr{58} =5,

1<j<p
3k
hence Z < p. Put it differently, if m 1= p~! Z =L , then m < 1. Finally, using the
15750 1<5<p A
well-known inequality, comparing the geometric and the arithmetic :nean, we obtain:
Sk :\'15
d‘etig_‘T_)_ = 2 omP <1.
det(X) 1Zj<p Ag

o Nk
The inequality is strict, if © £ Oy, because the {;,i} are not all equal. O
] 1<58p

Lemma 4 (Comparison of the values of F at points ék) If k1, ke € K, ki # ko, are such that
—ng C W[ﬂ_!_(wkl # Wi, then F(Ey,) < F’E);“) particulary, for every k € K, k # ky,
F{Ey) < Fi(Oy,), frecall: ¥V = Wi, [.

Proof Again it is sufficient to gen: det(%y,) < det(T,). The condition Wy, < Wy, is
equivalent to ko C ki and kg # ky; but, if z¥ and 7% are the partitions correspond-
ing to ®k1 and E)k.‘., ke ¢ k; tneans that any elements of 7%2 is an union of elements of
wki; thus for any i € {1,--, [kz|} the common eigenvalue Xj,‘ , (7 € 711 2} of Ek2 is the mean

of the eigenvalues rj;-“, (je 71':(2) of Ek;, thus, using again the same inequality, we obtain:

Tk Tky
II X< I 3%,
jEme jen

with strict inequality for at least one ¢ € {1,--, [ka|}, if kg # k, so:

det(Bg) = ] T[ X < ]I H Nt = det(B,)

1<k} jew:" L1giglka] ;e k2

Particularly, k C ko, forevery ke K. O

Remark: The convergence of & maximizing sequence, (at every stage of the proof), is
an easy consequence of: As F tends to —co, at infinite (proof of lemma 1}, any maximizing
sequence is bounded, thus a converging subsequence can be chosen out of this sequence: clearly,
les ! (I € W) denotes its limit, of course F({) = F(Oy}; hence I = &y (lemma 4}, since By is
the unique maximum of F' in Wh,.
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